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Abstract

Image databases attempt to allow users to effectively
search through large sets of images. These images are
typically captured intentionally by a human (eg. vaca-
tion pictures) or automatically by cameras attached to
sensors (eg. a security camera in an airport). As with
all other searchable end-to-end database systems, image
databases need the following facilities: storage, indexing,
querying, and result display. In this survey, I will focus
on the method by which image databases can be queried
as well as all supporting technologies such as feature ex-
traction, query matching, and ranking.

1 Introduction

The corpus of images available is growing quickly, and
users need effective means to query this dataset. We
would like to ask semantic questions about the images
in the corpus, but computers are currently unable to dis-
cern meaning from images the way humans can. Image
database systems attempt to bridge the gap between se-
mantic meaning of a query and a set of image features
which can be measured and compared quantitatively.

Though the field of image database and semantic im-
age querying is relative new, it can be easily related to the
much more developed field of semantic textual retrieval.
Specifically, image features are similar to n-gram fea-
tures of text [14]. When searching a text document, we
are not concerned about letter frequency; instead we are
interested in the meaning of the words and how they form
thoughts. Just as semantic textual queries can be trans-
formed into measurements of textual features (eg. local-
ity of query terms), semantic image queries can be trans-
formed into image features. Even though the general

method to compute results for semantic textural queries
is similar to that of semantic image queries, the systems
which support these facilities are largely different.

Image database systems are comprised of a number of
pieces which span the entire field of computer science.
When images are collected, they need to be put into the
database which raises storage concerns because images
are relatively large in comparison to text. Next, features
must be extracted from these images such that they can
be compared quantitatively. The user must then be pro-
vided with a meaningful interface to easily ask seman-
tically meaningful about the images. The results of the
query must be ordered by some feature dependent metric
and displayed so that the user can effectively digest the
results. To make the user experience more interactive,
features should be precomputed off-line and indexed to
enhance the wall-time speed of on-line computation.

There are a number of frameworks like MARS [13]
and Virage [2] which provide a base on which an image
database system can be built. They implement the com-
mon functions described above to allow researchers to fo-
cus on connecting semantic meanings to image features.
These frameworks focus on building real software sys-
tems which can answer semantic queries based on current
computer vision techniques. Though they may serve as
a useful testbed for vision research, they do not attempt
to solve the classic vision problems like general object
recognition.

In this paper, I will survey techniques to perform se-
mantic image queries, extract image features, and com-
pare extracted features. Other previous surveys of this
field like [23] attempt to summarize the largest possible
set of current image database systems in the literature. In
comparison, this survey will concentrate on techniques
and ideas common to many of the systems developed in



this field.

2 Extracted Features

Though users interact with image databases via queries,
it is impossible to meaningfully talk about such queries
without a fundamental understanding of the extracted im-
age features which form their foundation. Though some
of these features may seem capable of answering seman-
tic questions about images, it is through their combina-
tion that semantic meaning can be derived. Again, con-
sider these features to be similar to word/letter frequen-
cies or locality in the context of text search. Feature are
just crude, easily comparable representation of the image
in question.

The Virage framework [2] describes features (or prim-
itives as they call them) to be: meaningful, compact in
representation, efficient in computation, efficient in com-
parison, accurate, and indexable. Further, it is impor-
tant that these features can be automatically be extracted
from images. Typically these features are extracted from
the image as a whole. However, in some cases features
are extracted from sub-images to localize their proper-
ties, and preserve their spacial relationship.

2.1 Color

Color is the most obvious feature of an image. Typically,
color is the first thing that we humans notice about a pic-
ture. Further, it can easily be counted and there has been
significant research into color bases and the human per-
ception of color [11].

2.1.1 Color Spaces

The most common representation of color is in the RGB
color space. However, this color space is not the most
natural way to represent color it as a feature. A more
natural color space is HSV (Hue, Saturation, Value) also
known as HSL (Hue, Saturation, and Luminescence).
This color space maps all colors in the spectrum into the
H direction which is intended to be independent of its rel-
ative brightness. Because of this property, systems which
use this color basis tend to sample the H direction more
densely than the S and V directions [7].

Another commonly used color basis is the L*a*b color
basis because it closely corresponds to the human per-
ception of color [11]. In order to use this color basis,

one must first convert the RGB color into the XYZ color
space using a matrix transformation. Then, the L*a*b
color can be computed from the XYZ coordinates.

2.1.2 Color Histogram

This simplest means of quantifying the colors in an im-
age is to compute the color histogram over all the pix-
els in the image. Various systems choose to compute
histograms over different color spaces; for example, the
Focus [7] and MARS [18] systems choose to compute
histograms in the HSV color space where as the Blob-
world [5] and ImageRover [21] systems use the L*a*b
color space. These histograms, by their nature, are three
dimensional and are cumbersome in both size and com-
putational complexity of comparison. To reduce this bur-
den, adjacent histogram buckets can be merged; however,
this technique limits the total number of colors the his-
togram can discern.

A more complex representation of a color histogram is
its wavelet decomposition [24]. This technique consid-
ers a histogram to be a signal and attempts approximate
its form using wavelets. By design, wavelets can pro-
vide varying resolution levels with the addition or sub-
traction of wavelet coefficients. In some cases, the vari-
able amount of information contained in a wavelet de-
composition may help strike an optimal balance between
discarding information for computational efficiency and
the ability to discern as many colors as possible.

2.1.3 Color Locality

Similar to the wavelet decomposition used in WBIIS, the
CANDID system [14] attempts to model the 3-D color
histogram (and other image features) using a Gaussian
Mixture Model. They would like to compute the prob-
ability density function which describes the distribution,
but since such estimation is quite difficult, they instead fit
a Gaussian Mixture Model to the data. To fit the mixture,
they cluster the data in high-dimensional feature space
using the k-means clustering algorithm. Then for each
cluster, they compute the mean µ and standard devia-
tion σ. The Gaussians are then combined into a mixture
by weighting Gaussian using the percentage of elements
in its corresponding cluster. Such a probability density
function will preserve the location of features in the im-
age relative to each other.

Another means of preserving color locality is using



Color Adjacency Graphs as described in [16]. How-
ever, this approach is too computationally expensive be-
cause of the complexity of images typically found in am
image databases. Instead, the Focus system [7] devel-
oped a similar approach called a Spacial Proximity Graph
(SPG). Such a graph attempts to represent the general
layout of colors in an image while being scale indepen-
dent. The graph is constructed by partitioning the im-
age into a fixed number of sub-images and computing
the number of distinct peaks in the local sub-image his-
tograms. The color m and location i represented by a
peak in a histogram become a node ci

m in the graph.

E(ci
m, cj

n) =


1 if i == j
1 if m == n and (i, j) neighbors
0 otherwise

(1)
Edges are drawn between peaks in the same sub-image

or similar colors in adjacent sub-images as described in
equation 1.

2.1.4 Image Color Preprocessing

There are numerous image formats available today. Typ-
ically, their goal is preserve humanly observable image
quality while maximizing compression. However, im-
age compression increases the computational complex-
ity of accessing individual pixel’s color values because
of the decompression and change of basis overhead in-
curred. To overcome this obstacle, images are generally
converted to a common representation and color space
when added to the database [21]. In addition to image
format, some systems normalize image size, correct for
object position, and even attempt to align the orientation
of all images [19]. Though more ambitious, these tech-
niques attempt to introduce more regularity of image rep-
resentation in the database, easing the comparison of the
associated image features.

Another technique to introduce regularity of image
representation is color normalization. Poor lighting, over
exposure, and various camera induced effects may cause
images appear too dark or too light. To fix these issues
basic color properties can be corrected [17] and local
non-linear color effects (typically caused by compres-
sion) can be removed [19].

As mentioned above, color histograms in any color
space are typically too large to be used without further

processing. One technique to reduce the size of color his-
tograms is to ignore all colors which don’t exist in a given
image. In addition, common colors can be clustered and
represented by a single color point. This type of color
clustering is more effective than histogram bin merging
because the boundaries between cluster are placed where
logical color changes occur rather than arbitrarily where
bin boundaries occur. This technique is called Color Sets
[22], a Color Codebook [15], or indexed color [6] and
can greatly reduce the representation cost of an image’s
color histogram.

Though less general than previous techniques, color
thresholding (especially gray-level thresholding) can be
used to discard parts of an image which are known to
be uninteresting. In some cases, it has been found that
for a given image set, the image’s background satisfies
certain color and intensity properties. In these cases, the
background can be filtered out in an image preprocessing
step to prevent it from interfering with other extracted
features. PhotoBook [19] leverages this technique when
attempting to distinguish fish species on a common back-
ground.

2.2 Texture

Texture of the various objects represented in an image
is another important feature. Texture is typically repre-
sented by three components: coarseness, contrast, and
directionality (CCD) [1]. The QBIC system [8] describes
these features as follows: coarseness measures the scale
of a texture (pebbles versus boulders), contrast describes
its vividness, and directionality describes whether it has
a favored direction (like grass) or not (like a smooth ob-
ject). The CCD values can then be computed for each
pixel in the image and bucketed into a histogram like
colors. Some systems [18] have found such histograms
based directly on CCD values too noisy and have resorted
to various smoothing methods.

Steerable pyramids [10] are another way of represent-
ing the texture of an object. A description of how steer-
able pyramids can be used to measure texture can be
found in the ImageRover [21] system. Briefly, this tech-
nique attempts to model the texture of an object by using
computed image properties to ”steer” first-order approxi-
mating functions. The outputs of these functions are then
used to ”steer” other approximating functions which are
in an adjacent level of the pyramid. This way, the model
becomes more accurate as more levels are added (with



added computational complexity). ImageRover strikes
a balance between accuracy and computation with a 4-
level pyramid.

Wold-like decomposition [20] is yet another way to
represent texture of an image and its constituent parts. As
described by the PhotoBook system [19] the 2-D Wold-
like decomposition is made up of three field components:
a harmonic field, a generalized-evanescent field, and a
purely-indeterministic field. These components repre-
sent periodicity, directionality, and randomness, respec-
tively. Such a feature can be used to compare the peri-
odicity of two textures or to compare the other two less
salient dimensions if no periodicity exists.

2.3 Shape Descriptors

The simplest description of a shape is the Minimum
Bounding Rectangle (MBR) which contains that shape.
This technique is used in VisualSEEK [22] to identify
objects, assigning an MBR, a center, and edge lengths.
Given this shape descriptor, the color features described
above can be computed in a localized region to allow for
shape based image comparison.

A more accurate way of representing shape would be
to use snake splines to outline a shape, as used in QBIC
[8], or to detect contour boundaries, as done in NeTra
[15]. Detecting contour edges can be computed automat-
ically, although imperfectly. In contrast, the application
of snake splines must be done by a human and is gen-
erally used to query for a shape rather than define such
a region during feature extraction. Both of these tech-
niques attempt to more closely bound the shape to help
distinguish it from the containing background.

A more complex approach like Modified Fourier De-
scriptors (MFD) [18] attempts to model the edges and
contours of shape’s boundary. A method based on the
finite element method (FEM) borrowed from Mechan-
ical Engineering [19] computes the eigenvectors of an
object’s stiffness matrix, encoding an its deformations
relative to an average assumed shape. Both of these
techniques are more computationally expensive but can
provide more accurate shape descriptions which can in-
crease the accuracy of comparison.

2.4 Segmentation

The simplest image segmentation scheme is to predeter-
mine the size and location of all segments in the im-

age, essentially a grid. This technique is used with great
success by MARS [18] and ImageRover [21] to local-
ize other color or texture related features in an image.
Shoebox [17] has combined this grid segmentation with
Voronoi segmentation based on regions of similar color.
However, they found that simple grid based image seg-
mentation provided them with sufficient locality for color
and texture features that there was no need for the more
expensive Voronoi segmentation.

Another approach is to segment greedily based on
non-overlapping regions of color and texture as done by
NeTra [15]. This technique is relatively fast to com-
pute, leveraging a dynamic boundary detection scheme
which searches for abrupt changes in the directionality
of texture. A similar technique employed by MARS [13]
performs a simple k-means clustering of color and tex-
ture features in 6-dimensions (HSV and CCD). Though
slightly more computationally expensive, reported re-
sults of these feature based segmentation techniques are
very positive.

A yet more expensive segmentation approach is to at-
tempt to fix a Gaussian mixture model to the color and
texture features as used in Blobworld [5]. The number of
Gaussians to fit is determined by the Minimum Descrip-
tion Length (MDL) principle and then the Expectation-
Maximization (EM) algorithm is run on the data to actu-
ally fit the model. The idea is to have each model in the
mixture represent a single segment in the image. Thus,
adjacent pixels which belong to the same Gaussian are
clustered together. Though more expensive, this com-
putation can be performed off-line and can still be com-
pared to a user query quickly.

2.5 User-Aided Feature Extraction

The Shoebox system [17] devised a feature not based on
the image’s pixels, but rather a human’s interpretation of
the image. They attempted to lower the barrier of image
annotation by allowing the user to annotate the images
using a microphone and speech recognition. They were
able to show that with current speech recognition and tex-
tural search technology they were able to achieve a good
conceptual accuracy. However, this approach is clearly
not scalable and avoids the core issue of discerning se-
mantic meaning from the combination of image features.



3 Query Methods

Queries are the fundamental way by which users inter-
act with an image corpus, as other options (like random
image browsing) are too cumbersome or computation in-
tractable. In order for a query method to be useful it
should be semantically meaningful and efficiently com-
parable to images in the database. Here, I describe a
number different methods by which an image database
can be queried which satisfy these properties and make
use the features discussed previously. Further, I will mo-
tivate why each type of query effectively converts the se-
mantic meaning of the user’s question into a set of quan-
titatively comparable image features.

3.1 Query by Content or Example

The simplest form of query is an example image. In
this form of query, the user submits the sample image
itself or a pointer to such and image and asks the sys-
tem to find similar images. In the WBIIS system [24],
the sample image is processed in the exact same way that
database images are preprocessed. The same features are
extracted, in this case a color wavelet decomposition, and
are compared to the database image’s features directly.
Essentially, this sort of query searches for images whose
color distribution and layout resemble that of the query
image.

The CANDID system [14] takes the user submitted
image and computes a probability density function (PDF)
over localized color histogram and CCD texture features
in the image. This approach avoids the need to compare
high-dimensional feature vectors to compute similarity.
Though more computationally expensive than comput-
ing bare feature histograms, this PDF more accurately
describes the content of the image increasing the accu-
racy of the search.

In the Blobworld system [5], a user submits an im-
age of interest and selects a particular region. Blobworld
uses color histograms and CCD texture features compare
regions of user interest. In Focus [7], the user is re-
quired to submit just a sub-image (with the background
and other unimportant objects subtracted) which is com-
pared to images in the database. This query attempts to
find objects who HSV color histogram match that of the
queried object. Additionally, in the case of Focus, the
location of the object in the image is considered using a
Spacial Proximity Graph.

Some systems like [18] only use this sort of example
based query during testing to measure the efficiency of
their other query methods. In this particular case, they
provided ground truth data about which images were ac-
tually similar to a particular example image. Then, they
provided a particular image’s feature vector, containing
both CCD texture features and MFD shape features, as
a search expression to find other images in the database.
From this, they were able to compute the precision and
recall of the search. Section 4.4 further discusses how to
evaluate the performance of image queries.

3.2 Query by Shape

In addition to querying using an entire example image,
some systems like VisualSEEK [22] allow a user to draw
a bounding box on a blank canvas and specify properties
about that region. For example, one can draw a box in
the upper-middle portion of the canvas and specify the
color of yellow in an attempt to match images containing
a sunset. More than one region may be specified with dif-
ferent properties to further narrow the search. The search
is then performed over localized HSV color histograms
which have been pruned using Color Sets for computa-
tional efficiency.

In the QBIC system [8], the user can outline an ob-
ject in an image using a snake-split which automatically
snaps to inferred edges. Then the user can query for other
images which have this sort of shape in the image inde-
pendent of location. Additionally, the user can sketch
a shape free-hand and request a similar query. Similarly,
the WBIIS system [24] can perform partial image queries
based on user sketches. These systems provide a means
for the user to have no example image to work from but
instead attempt to find semantically meaningful objects
defined by the user’s free-hand or assisted sketch.

3.3 Query by Feature

By far, the simplest and least semantically meaningful
type of query is direct value thresholding of the features
vectors themselves. Though not typically meaningful,
this sort of query is generally very efficient. In fact, all
other queries reduce to a feature query where the fea-
tures in question and their thresholds are automatically
computed. In VisualSEEK [22] a user can directly query
for specific images which contain certain colors and ob-
jects of certain sizes. If searching for an ocean scene, for



example, a simplistic query for a blue region (the ocean
and sky) above a darker region (land) may be sufficient.

Similar facilities are available in most image database
systems, though they may be implemented in slightly dif-
ferent ways. In one system [4], object and color loca-
tion is translated into identifying string (”upper-right” or
”middle”) and then sub-string matching is used to com-
pare location. In NeTra [15], a color codebook can be
queried for images with specific colors which can be sup-
plemented by specifying the location as a bounding rect-
angle.

The QBIC system [8] allows a user to select a texture
from a texture palette compiled from all images in the
database. These textures are identified by CCD coordi-
nates and are directly compared to the CCD texture fea-
ture extracted from the database images. This may be the
most semantically meaningful version of direct feature
queries as it provides a user with an idea, in this case a
representative texture swatch, of what corresponds to a
particular feature value.

3.4 Query by Refinement

Though a seemingly inefficient use of a user’s time,
query by refinement is a good method to extract features
from an entirely semantic query. In the ImageRover sys-
tem [21], a user is presented with a random subset of
images from the database. She then may either request a
new set of images if there aren’t any ”interesting” images
in the current set or select a particular image to retrieve
more similar images. Similar images are judged based on
a k-nearest-neighbor clustering of L*a*b color histogram
features and steerable pyramid texture features. This pro-
cess iterates until the user has found images which suit-
ably answer their query. ImageRover reports that typical
queries can be answered in this manner within two or
three iterations.

A refinement of this strategy is presented in Photo-
Book [19] where the initial set of images shown to the
user is a result of a text query over the image annotations
and then sorted by their relevance. Then the processes
iterates by the user choosing a particular image and re-
cursively refining the result set. Images are compared
using the eigenvectors of a stiffness matrix for objects,
wold-like decompositions for texture, and color.

3.5 Query by Context or Metadata

Though not directly a query of the image content, query-
ing the context or metadata present for a given image
can be a good way to refine an image query. In the case
of the UC Berkeley Digital Library project [4], many of
the images contained text annotations. They were then
able to use these annotations to help filter out images
which did not match the user’s query which helps them to
avoid wasting precious on-line computational resources
needed to compare image features. Similarly, PhotoBook
[19] starts its query by refinement with a directed textual
search as mentioned previously.

The Shoebox system [17] goes a step further and at-
tempts to make it convenient for users to submit text
annotations for images as they are being added to the
database. Shoebox allows users to speak annotations for
their images, transcribing them using speech recognition
software. These annotations then become searchable in
the Shoebox interface, right along side other image fea-
tures.

More unique in their metadata discovery, WebSeer [9]
collects images from the Internet and extracts metadata
about the image from its surrounding web page. Specif-
ically, the web page title and text surrounding the im-
age are captured in addition to the image’s name. All of
this metadata is searchable in the WebSeer user interface.
This text capture is an attempt to gain semantic mean-
ing from the web page and transfer it to the image for
more meaningful search. This technique has been more
recently applied by Google Image Search [12].

3.6 Combination of Query Methods

No one particular query method is able to capture the true
semantic meaning of a user’s query. Consequently, most
image database systems employ multiple query methods
to allow a user to effectively express their query. Some
systems allow the user to specify a query using multiple
methods at once, other systems provide the other query
methods as refinement tools. In all cases, the intersec-
tion of all query results will be displayed to the user for
inspection.

4 Query Matching

As mentioned before, image database queries attempt to
map the semantic meaning of the query to a set of feature



values. Section 3 describes as number of query methods
and the features which they leverage. Though the queries
and the features may be different, all image database
queries follow the same logical algorithm. First, the se-
mantic query is converted into a set of features; perhaps
by extracting features from a sample image (query by ex-
ample) or by receiving the values directly from the user
(query by feature). Second, the features are compared to
the features extracted from the images in the database.
Lastly, the resulting set of matching images are ranked
by some similarity metric which is related to the feature
comparison method.

4.1 Feature Comparison

4.1.1 General Feature Distance

Many systems treat features as vectors in a high-
dimensional space. By doing so, it is easy to use vector
comparison methods to define a distance metric between
features. One system [18] defines the distance between
two features vectors to be the cosine of the angle between
them. The WBIIS system [24] use the euclidean dis-
tance between the two feature points in N-dimensional
space. This metric is also used by Blobworld [5] and Im-
ageRover [21].

In PhotoBook [19] the distance between two feature
vectors is computed as the Root Mean Squared (RMS)
Difference. It was found that RMS difference was ef-
fective for shape features, but relatively poor for texture
features. These metrics are both inexpensive to compute
and experimentally accurate. However, not all image fea-
tures can be represented as a feature vector.

4.1.2 Color Comparison

Color histograms are an example of a image feature
which is not easily compared directly as a feature vec-
tor. There are many different ways of comparing color
histograms which have various different trade-offs. Vi-
sualSEEK [22] uses histogram distance, given by equa-
tion 2, as a measure of color difference. However, this
metric neglects to compare similar colors; for example, a
dark red image would be equally dissimilar to both a red
and blue image.

d(g, h) =
∑
A

∑
B

∑
C

(h(a, b, c) − g(a, b, c))2 (2)

One way to include the notion of similar colors into
the metric is to use quadratic histogram distance given by
equation 3. Here A is the similarity matrix representing
the cross-correlation of all colors where ai,j is given by
equation 4.

d(g, h) = (h − g)tA(h − g) (3)

ai,j =
1 − di,j

max(di,j)
(4)

Here di,j is the L1 distance (also known as city block
distance) between color i and color j in the RGB color
space. A similar value for ai,j can be computed for every
color space. Though this metric is much more accurate, it
is also far more expensive to compute and is prohibitive
in many situations. Even so, system like QBIC [8] and
Blobworld [5] rely heavily on histogram quadratic dis-
tance.

A similar metric used by VisualSEEk [22] is Color Set
Distance. Instead of using a typical 3-D color histogram,
they only use a histogram over their limited Color Set.
Then they compute the quadratic histogram distance be-
tween those to specialized color histograms. This serves
to reduce the computation expense of computing this
metric and also reduces the amount of data needed to be
stored as the color sets are far smaller than typical color
histograms.

A much simpler and computationally efficient metric
is the histogram intersection given by equation 5, or in
the case of [18], its inverse. This measure computes only
the overlap between two histograms and is a good first
pass to disregard many images which are obviously dis-
similar to the query.

d(h, g) =
∑

A

∑
B

∑
C min(h(a, b, c), g(a, b, c)
min(|h|, |g|)

(5)

Another computationally efficient metric is the his-
togram inner product given by equation 6. Two color
histograms which are completely dissimilar (or disjoint)
will result in a inner product of zero. However, two iden-
tically similar histograms will result in a large value de-
pendent on the number of data points. To resolve this,
we can normalize the inner product which then becomes
identical to the cosine of the angle between these two
histogram functions. This method is used extensively by
CANDID [14].



d(h, g) =
∑
A

∑
B

∑
C

h(a, b, c)g(a, b, c) (6)

The Focus [7] system attempts to find peaks in the 3-D
color histogram and then compares the L2 distance (or
euclidean distance) between those peaks. This is both
inexpensive computationally and also allows Focus to
avoid storing the entire color histogram. Though this
may loose accuracy, they argue that this method would
be similar to a histogram with all non-zero buckets giv-
ing them more discriminating power.

If a Spatial Proximity Graph (SPG) has been com-
puted over the database images, as done by the Focus
system [7], then it can be used to compare both colors
and the general spacial relationship of those colors in
the query image to those images in the database. First,
an SPG is computed over the query image as described
in Section 2.1.2. Then peaks which don’t exist in both
graphs are discarded. The remaining subgraphs of the
query and database image are compared to see if one con-
tains the other. Unfortunately, this problem reduces to the
NP-complete subgraph isomorphism problem. However,
since the two graphs have identical labeling, we can com-
pute this in O(nm) time where n is the number of edges
and m is the number of color labels.

4.1.3 Value Thresholding

In general, feature value thresholding is a poor metric for
computing the similarity between images. However, it is
an excellent way to discard large sets of images which
clearly do not match a given query. This lowers the on-
line computational burden of a query significantly. This
basic strategy can be seen in the FIDS system [3].

The WBIIS system [24] uses a similar method based
on the standard deviation of wavelet coefficients in the
lowest frequency band. They found that the standard
deviation of wavelet coefficients representing color in-
tensity is a good metric of similarity. In the first phase
of query matching, they compare the wavelet coefficient
standard deviation stored in the database to that of the
query image and disregard images whose differed be-
yond some threshold.

4.1.4 Classifier

The MARS system [18] system applies a probabilistic
model to matching user queries. The probability of an

image I matching a query variable vi is defined to be
P (vi|I) where each vi is derived from the query im-
age. Then we can define a query to be Q(v1, v2, ..., vn)
and the probability that an image matches a query to be
P (Q(v1, v2, ..., vn)|I). This formulation assumes that all
of the features are independent so as not to skew the re-
sults. To make this formulation meaningful, all of the
distance measures between image features are converted
into a probability. Two images are defined to be simi-
lar if the probability of similarity is above a predefined
threshold. We can treat this probabilistic matching as
a rudimentary classifier where each feature becomes a
weak-classifier and equal weights are used to combine
them.

The WebSeer system [9] uses a battery of tests of clas-
sify an image as either a photo, a drawing, or an artificial
computer generated image. They have trained this clas-
sifier on hundreds of images fetched from the Internet
which were classified by hand. Though this comparison
alone won’t be able to answer a semantic query, it can
be used to reduce the number of images which must be
considered for a particular query.

4.2 Increasing Performance

The largest barrier that image databases face is the large
amount of on-line computation they must perform to re-
turn accurate results to semantic queries. Anything that
can be done to reduce the amount or complexity of on-
line computation pays huge dividends in usability. One
technique used by nearly all image database systems is
to precompute as much feature data about the stored im-
ages as possible off-line. Though some [19] say that this
approach limits the queries which can be posed to such a
system, it is a necessary step to scaling such systems to
deal with real image datasets.

Another approach described in Section 4.1.3 and used
extensively in WBIIS [24] is to discard images which
don’t match a given query. This way, the more com-
putationally expensive operations can be performed on
a much smaller set of images. Though this only delivers
a constant factor improvement, it is still extremely im-
portant with large image sets.

Indexing the extracted features is yet another approach
common to nearly all image database systems. However,
indexing alone cannot effectively answer queries because
the image features are so complex that only the simplest
amoung them can be meaningfully indexed. Instead, in-



dexes are used as a more intelligent value threshold; they
are used as a first cut to narrow the search and bound the
amount of required on-line computation. This method is
well illustrated by Focus [7].

A similar approach to reducing on-line computation is
to reduce the dimensionality of the feature vectors using
techniques like Principle Component Analysis (PCA).
ImageRover [21] and other systems use such algorithms
to discard part of the feature vectors which don’t contain
much ”useful” information. This reduces both the feature
storage cost as well as the feature comparison cost.

4.3 Ranking in Multiple Feature Dimensions

Since nearly all semantic image database queries use
more than one query methods and image feature, there
needs to be a way to rank the results of query taking into
account all of the feature similarity comparisons. This
ranking value is often called the compound query score.
The VisualSEEK system [22] independently searches for
matches in each feature dimension and then computes
the intersection of all matched images. Images are then
ranked by applying weights to each of the features, where
the weights represent the query’s confidence in that fea-
ture for discerning similarity with respect to the per-
ceived semantic meaning of the query. In the Blobworld
system [5], the compound query score is calculated both
by using fuzzy-logic operations to aid in clustering and
user provided feature weights.

A similar technique is employed by the FIDS system
[3] where they try to develop a metric space of the fea-
ture similarity results. To do this they combine feature
distance measures using the following operations: sum,
weight, min, and max. This method is more power-
ful than the simple weighting employed by VisualSEEK
or the fuzzy weights used by Blobworld. Further, this
scheme can be expanded to represent much more com-
plex relationships between features.

In order to combine the similarity of multiple image
features into a total order, the MARS system [18] uses a
process called feature sequence normalization so that all
features have the same effective weight. First, the system
normalizes the values of all features to [0, 1] individu-
ally. Second, the variance of the different features are
used to remap all features onto a single [0, 1] range such
that direct comparison of features values has meaning. If
particular feature are found to be more representative of
the semantic meaning of a user’s query, then those par-

ticular features can be weighted during the second step
of the normalization. This process allows a total order
of image similarity to be trivially computed which is the
natural ranking for results to a given user query.

4.4 Evaluation of Matching Accuracy

Without and objective measure of the accuracy features
and queries, it is difficult to trade-off the computational
complexity of a given features with its expressive power
with respect to semantic queries. Here, I will describe the
techniques many of these systems leverage to measure
this performance

4.4.1 Feature Matching Accuracy

This VisualSEEK system [22] attempts to identify shapes
using a minimum bounding rectangle and color his-
togram. To measure the effectiveness of these features,
they built 500 synthetic images composed of twelve dif-
ferent types of shapes randomly placed in the image and
filled with a random solid color. They then randomly
generated queries, a set of bounding rectangles, and com-
puted which images should have been matched by those
queries. Lastly, they extracted features from the synthetic
images and compared the result of a query to the system
with the ground truth data they computed. This method
showed that localized color histograms using minimum
bounding rectangles had consistently better precision and
recall when compared to global color histograms.

Similarly, in Blobworld [5], they compared the accu-
racy of their system which leveraged local features com-
puted from image segments against a system which only
used a global histogram. Again, they found their system
to have consistently better precision and recall.

4.4.2 Query Matching Accuracy

The canonical method to measure the accuracy of a se-
mantic query is to measure it’s precision and recall from
a test dataset whose ground truth is known. The precision
of a query is the ratio of the number of relevant images
in the database retrieved to the total number of images
retrieved. The recall of a query is the ratio of the number
of relevant images retrieved to the total number of rele-
vant images [18]. High precision or high recall alone is
not indicative of a good methodology. Instead, the goal
is to maximize the sum of precision and recall. Nearly



all systems which measured their query accuracy use this
method.

Another method for measuring accuracy of a query
is to measure the improvement over random retrieval.
Though illustrative, it is expected that any system us-
ing image feature for query matching should do far bet-
ter than a simple random retrieval of images from the
database. This approach is briefly considered by Shoe-
box [17].

5 Conclusion

Image database systems are becoming increasingly im-
portant as the typical user has access to more images.
Further, since computer vision has not been solved in
general, we are left to engineer systems which can lever-
age what little semantic knowledge we can get from both
the user’s query and the images themselves. In this pa-
per, I have described a number of different methods for
querying image database, extracting image features, and
comparing extracted features to build an ordered result
set.

Though all of the systems surveyed paid attention
to the computational complexity of searching image
databases, they typically tested their systems on small
image sets (approximately 5000 images). In today’s
world, users have access to millions of images on the
Internet and thousands in their personal archive. These
number are going to continue to grow in the coming years
as cameras are integrated into more personal devices.
Future systems will have to leverage the computational
power of a cluster of computers if there is any hope to
keep up with the abundance of images.

Recent works in the field of image databases largely
ignore the performance implications of having extremely
large image sets. Though some systems attempt to ex-
tract features from images in the compressed domain to
avoid some computation, this savings will not be enough
to make up for the enormity of the image set. Other sys-
tems focus on applying the general techniques described
here to specific fields, like the field of medical imaging.
Doctors need automated techniques to sift through the
huge mounds of data produced by MRI, X-Ray, and CT
imagers. Quering image databases is not a solved prob-
lem by any meas, and the needs of commercial and per-
sonal applications will continue to drive innovation in the
image database field for the foreseeable future.
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