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Abstract

TaskMaster is a system for managing priority-ordered
queues that is designed to scale to 1 billion tasks across
100 thousand queues per node. A reliable queuing sys-
tem, such as TaskMaster, provides a mechanism for dis-
tributing units of inherently serial work (tasks) to work-
ers. Priorities are lexicographically ordered strings that
give users more power than FIFO or fixed-range inte-
ger priorities when defining queue order. TaskMaster
provides the ability to atomically transition a task be-
tween queues, facilitating the decomposition of process-
ing into a sequence of tasks. Individual tasks are exclu-
sively leased to workers for the duration of processing
to minimize system-wide work duplication. TaskMas-
ter helps system designers detect bottlenecks and direct
system optimization by providing queue statistics such
as enqueue and dequeue rates, as well as queue lengths.
TaskMaster allows application designers to focus on the
individual stages of data processing instead of task dis-
tribution.

1 Introduction

There exists a large class of problems which consist of
many independent and inherently serial units of work.
The transactional semantics of these problems are such
that they can typically be broken down into a sequence
of idempotent sub-problems [9]. For example, extract-
ing and indexing content from a web page first requires
fetching the document itself, then the document must
be processed to gather the meaningful data, and finally,
these data must be added to an index. Each of these steps
are idempotent and take significant time to complete ei-
ther because of computational expense or network delay.

Such problems can be parallelized by exploiting the
large number of tasks to be completed and the implicit
pipeline structure of computation. TaskMaster simpli-
fies the distribution of individual sub-problems by join-

ing stages of processing together using atomic opera-
tions on reliable queues. Typical applications built using
TaskMaster consist of a set of worker pools, which are
sets of processes that are prepared to perform a prede-
fined operation on tasks that are leased from TaskMas-
ter. Applications use a pull-based model where work-
ers pull tasks from TaskMaster eliminating the need for
TaskMaster to keep track of workers in the system. This
greatly simplifies the implementation of TaskMaster it-
self. It also allows worker pools to be dynamically re-
sized in response to load or other factors without notify-
ing TaskMaster.

TaskMaster has been in continuous use for over a year,
facilitating the construction of both continuous latency-
sensitive and batch throughput-oriented applications.
These systems range from having a single TaskMas-
ter node and a few workers, to having a multi-node
TaskMaster cluster with hundreds of workers. These
disparate distributed applications show the flexibility of
TaskMaster and the diverse applicability of the reliable
queuing model.

Section 2 provides a more detailed description of
TaskMaster’s data model. In Section 3 we explain the
various design decisions made to enact this model, and
Section 4 provides an overview of the client API used by
workers. Then, Section 5 describes a basic implemen-
tation of TaskMaster and a set of important refinements
to improve performance. Next, Section 6 discusses the
performance of the system and the effects of the various
optimizations. Section 7 illustrates how TaskMaster is
used in various applications at Google. Finally, Section 8
describes related work and Section 9 draws conclusions.

2 Data Model

TaskMaster manages a set of named priority-queues that
contain tasks. A task is a (queue, priority, data) triple
of user-provided binary strings representing an opaque
unit of idempotent work from TaskMaster’s perspective.
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The queue name is a pair of (consistency group, name); if
no consistency group is provided, the default consistency
group is used. Operations within a consistency group
are atomic (Section 3.4). Priorities are lexicographically
ordered and are unique within the named queue. The
data field is not interpreted by TaskMaster and has no
a priori size limit; but for performance reasons is typ-
ically between 10 bytes and 10KB. Queues themselves
are ephemeral in that they do not exist unless they con-
tain tasks.

Beyond supporting enqueue and dequeue operations
of a normal queue, TaskMaster supports exclusive,
arbitrary-length leasing of tasks to clients. Exclusive
leases ensure workers process disjoint sets of tasks with
minimal coordination. Using the lease operation, clients
can discover and lease the top-k highest priority tasks
from a given queue. Upon lease expiration, tasks are free
to be re-leased to other clients.

3 Design

TaskMaster is designed to work in single or multiple
node configurations. Each node can manage O(1B) tasks
across O(100K) named queues. Workers are provided
with an interface through which they can discover the
names of queues as they are not expected to have a priori
knowledge of these names. Atomic update operations are
provided to allow workers to reliably move a unit of work
to the next stage of processing. TaskMaster attempts to
fairly divide resources among queues and ensure liveness
to workers performing operations on those queues.

To aid administration, TaskMaster provides efficient
queue deletion and queue statistics such as size, enqueue
rate, dequeue rate, and so on. In this section we discuss
how each of these features is designed and the reasoning
behind those decisions.

3.1 Assumptions
The TaskMaster cluster and associated application spe-
cific workers are assumed to run in a datacenter envi-
ronment with a relatively high bandwidth and low la-
tency connectivity. All nodes are expected to be rela-
tively powerful, heterogeneous commodity PCs as de-
scribed in [4]. We anticipate node failures of both work-
ers and TaskMaster nodes to be caused by power failure,
hardware failure, or those jobs being forcibly resched-
uled by the cluster management application. Thus, node
failures are typically fail-stop. Additionally, we expect
occasional network partitions between TaskMaster and
its workers, and between TaskMaster and its backing data
store.

The data store backing TaskMaster is only expected to
provide durability and atomicity of single writes; atomic-

ity, consistency, and isolation across multiple writes are
provided by TaskMaster itself. In particular, the data
store is free to reorder the application of mutations as
long as writes are durable once it responds. The data
store need not support multi-row transactions.

3.2 Uses of Priority-IDs

Named Priority-IDs (PIDs) because they serve as both a
priority within a queue and a unique task identifier, PIDs
provide users more flexibility than a simple first-in, first-
out (FIFO) queue. We chose to allow arbitrary PIDs be-
cause of the large variety of use-cases it enables. Most
importantly, PIDs allows an application to give particu-
larly important tasks high priority.

A simple FIFO queue can be approximated with PIDs
using the local time at the client plus a locally accessible
unique value (like CPU ID or MAC address). However,
for efficiency, TaskMaster also provides explicit support
for FIFO queues when the user does not provide a PID.
In these cases, TaskMaster keeps track of the last PID
in the FIFO queue and assigns a lexicographically larger
(and thus unique) PID to such incoming tasks.

Additional control is useful if applications want to pro-
duce an ordering of tasks different from the order in
which they were enqueued. For example, when enqueu-
ing order might induce contention on shared resources
(like a set of files), PIDs can be a coarse local timestamp
plus a hash of the data as the suffix. This produces jitter
in the task order while approximating FIFO. Inversely,
PIDs are also useful if tasks are enqueued in a random
order but some order should be imposed. For example,
when reading multiple sections of a file, it would be more
efficient to read them in order even if they were requested
in random order. Here, the PID could be the file offset of
the various chunks.

Another use of PIDs is to limit work duplication when
there is a priori knowledge of uniqueness of tasks. For
example, if a task was requesting to fetch the HTML
for “http://www.google.com”, it could be given the PID
“http://www.google.com”. While that task was still
queued waiting for processing, future enqueues of the
same task would collapse into a single task.

3.3 Task Leasing

The primary purpose of leasing tasks is to limit work du-
plication in the system. TaskMaster provides exclusive,
arbitrary-length task leases to workers instead of locks to
make applications more resilient to worker failure. Upon
worker failure, the leases it held will simply expire and
a new worker can acquire a new lease on those tasks.
In some failure modes, this may result in a task being

2



executed more than once, perhaps in parallel, which is
allowed because tasks are expected to be idempotent.

For example, suppose a worker leases a task and then
disappears because of a network partition. The task may
then be expired and given to another worker while the
first worker continues to execute the task. Alternatively, a
previous worker may have completed the work and failed
before notifying TaskMaster.

When requesting a lease, a worker will receive at most
k tasks but we do not guarantee those tasks will be the
exact k highest priority tasks. Relaxing this constraint al-
lows for increased concurrency (Section 5.4.2) and lazy
lease expiration (Section 5.6). This leniency does not
add any additional complexity from the user’s perspec-
tive; receiving an approximate top-k result can be mod-
eled as a reordering of an enqueue and a lease operation
acting on the same queue. This is common in practice be-
cause workers asynchronously enqueue tasks while oth-
ers lease them.

In many cases, workers can’t effectively estimate the
duration of a task’s execution. For example, download-
ing an object of unknown size from the Internet might
take arbitrarily long. TaskMaster provides the ability
to renew the lease on a given task to avoid the unin-
tentional and exceptionally expensive duplication of this
work upon lease expiration. There is no limit on the num-
ber of renewals for a given task as this mechanism is only
meant to detect worker failure; in this capacity, it acts as
a heart-beat signal from the worker. Renews for already
expired tasks are ignored and an error is returned to the
client.

3.4 Atomic Operations

TaskMaster provides atomic queue operations within a
consistency group. A consistency group is a set of queues
whose names share a prefix (recall, a queue name is (con-
sistency group, name) pairs) and may contain an arbitrary
number of queues. All queues in a consistency group
are guaranteed to be managed by the same TaskMaster
node so that clients do not need to perform a distributed
transaction across TaskMaster nodes to achieve atomic-
ity. Thus, consistency groups provide a natural unit of
partitioning (Section 5.7) when using TaskMaster in a
cluster configuration.

TaskMaster provides several atomic operations within
a consistency group, namely lease and update operations.
Lease operations allow workers to atomically discover
and lease the k highest priority tasks from a given queue.
This ensures that workers will work on a disjoint subset
of available tasks even when performing these requests
in parallel. Update operations contain instructions to en-
queue, dequeue, and renew leases on any number of tasks
from any number of queues. Atomically dequeuing one

…TM1 TM2 TMn

TaskMaster Cluster

Stage 1

Workers

Stage 2

Workers

Stage K

Workers
…

RPC

Figure 1: Shows the typical topology of a TaskMaster-
based application. Each box is a separate process.

task and enqueuing another provides workers with the
ability to easily transition a unit of work between stages
in a pipeline.

3.5 Queue Introspection

TaskMaster provides several important details about the
queues it manages to aid in debugging the distributed ap-
plications it enables. First, it provides the enqueue, lease,
and dequeue rates to help identify bottlenecks in the dis-
tributed system. Second, it provides total queue size and
leased set size to highlight queues which are most af-
fected by the previously identified rate mismatch. Third,
a sample of leased tasks can be viewed together with the
associated worker’s IP address to help discern the cause
of processing latency. Finally, it provides the average
measured lease duration (wall time from lease acquisi-
tion until task dequeuing) of tasks from the queues. This
represents the average length of time a worker spends
processing tasks from a given queue, suggesting stages
which could most benefit from optimization.

Most of the data backing the queue statistics is consid-
ered soft state because it can easily be regenerated after a
TaskMaster failure; thus, it is not stored in the data store.
However, queue and leased set size must be accurately
accounted for and checkpointed because acquiring this
data would require a full scan of the data store.

Since TaskMaster is expected to manage a large num-
ber of queues, users can view any of the available statis-
tics on any subset of queues to help focus their debug-
ging. In the case where multiple TaskMaster nodes exist
in a cluster, each node is able to query the others to pro-
duce an aggregate response across all TaskMaster nodes.
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Program 1 Enqueue a task in TaskMaster
UpdateRequest request;
Task& t = request.add_enqueued();
t.set_queue("google.com#fetch_stage");
t.set_pid("http://www.google.com");
t.set_data("fetch document");

UpdateReply reply;
tm_stub->UpdateTasks(request, &reply);
assert(reply.success());

3.6 Application Design

Applications built on TaskMaster typically consist of
multiple pools of workers, as seen in Figure 1, each re-
sponsible for a single stage in the computation pipeline.
Queues representing a particular stage are named in a
predictable way, such as a common suffix. At startup,
these individual workers ask TaskMaster for a list of
queues of interest based on that application’s naming
scheme. The worker’s inner loop iterates over the
queues, leases tasks from that queue, processes them,
and then atomically dequeues that task and enqueues the
derivative unit of work into the next stage’s queue.

To make efficient use of this model, each task should
represent a unit of work which takes much more time
to complete than lease and subsequently to dequeue. In
the case where tasks are logically small in nature, many
tasks can be dequeued at once to amortize the dequeu-
ing cost across many tasks. Leases can be acquired from
multiple queues at once to reduce the quantity of RPCs
to TaskMaster when the number of queues become large.

4 API

Consumers interact with TaskMaster via RPC without a
client library other than the RPC stub. This alleviates the
need to keep various client libraries, written in different
languages, in sync as new updates to the protocol become
available.

All updates to TaskMaster are performed via the
UpdateTasks() method. Program 1 shows C++ code
that enqueues a single task into a queue residing in the
default consistency group (details omitted for brevity).
Tasks are added to the request’s set to enqueue via
add enqueued(); multiple tasks can easily be en-
queued together by invoking add enqueued() multiple
times. This task is requesting a worker to fetch a given
document. It uses the PID “http://www.google.com”
so this enqueue will coalesce with any existing request
to fetch the same document. Updates may also con-
tain a set of tasks to dequeue and a set of leases to ex-
tend. These sets are accessible by add dequeued() and

Program 2 Leasing tasks from a TaskMaster queue
LeaseRequest req;
req.set_queue("google.com#fetch_stage");
req.set_lease_secs(300);
req.set_max_tasks(10);

LeaseReply reply;
tm_stub->LeaseTasks(req, &reply);
vector<Task*>& lts = reply.leased_tasks();
// process tasks in ’lts’ as required

Program 3 Listing known TaskMaster queues
ListRequest req;
req.set_max_queues(10);
req.set_queue_re("[a-z.]*#fetch_stage");
req.set_min_tasks(5);

ListReply lr;
tm_stub->ListQueues(req, &lr);
vector<string>& qs = lr.matched_queues();

add renew() respectively.
Tasks can be leased from TaskMaster via the

LeaseTasks() method. Clients are free to specify
how many tasks they want to lease as shown in Pro-
gram 2. Additionally, clients can “filter” the returned
tasks server-side by a maximum PID value, since it can
be applied to the head of the queue without sacrificing
correctness. Other filters which would require arbitrary
queue traversal are not available.

Queue names can be discovered by the
ListQueues() method, since workers are not ex-
pected to have a priori knowledge of queue names.
Returned queues can be filtered by several properties
including queue length and name regular expression as
illustrated in Program 3. Unlike filters for leasing tasks,
we are able to consider many more queue properties
because that metadata resides in memory.

The API also provides simple mechanisms for effi-
ciently deleting a queue, gathering queue introspection
data from one or more queues, and batching multiple up-
date or lease operations into a single RPC. Additionally,
TaskMaster provides access to queue introspection data
visually via HTTP.

5 Implementation

The fundamental challenge of implementation is main-
taining performance when the amount of available mem-
ory is insufficient to hold all of the tasks. In fact,
TaskMaster would only be able to store O(2M) tasks in
memory given a 1KB average task size and 2GB of mem-
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ory to use. However, we only anticipate O(100K) queues
to be managed by a single TaskMaster node. This allows
us to keep the various per queue statistics in memory that
are needed for queue introspection.

As a result of the memory constraints, we must pro-
vide an efficient implementation with incomplete infor-
mation about tasks in the system. We will first show a
correct but inefficient implementation, then we will ex-
plain successive optimizations which don’t compromise
correctness and serve to improve performance. These op-
timizations are evaluated in Section 6.

5.1 Building Blocks
TaskMaster is built on top of Bigtable [6] and as such,
some of the implementation decisions were made with
Bigtable’s strengths and weaknesses in mind. Specif-
ically, random writes and linear reads (scans) are fast
whereas random reads are slow. These attributes are ar-
tifacts of how Bigtable stores data in SSTables on GFS
[15].

Various other storage systems exhibit properties sim-
ilar to those of Bigtable, and would benefit from sim-
ilar optimizations. Relational databases, such MySQL
[24], exhibit similar random write and indexed read per-
formance (similar to a scan).

Databases provide multi-row transactions with ACID
properties in contrast to single-row transactions provided
by Bigtable. However, TaskMaster doesn’t require the
full power of these multi-row transactions and would
likely provide better performance due to its knowledge
of application specific consistency requirements.

Other systems like Sinfonia [1], Amazon’s Dynamo
[11], and Distributed Hash Tables like Chord [27]
provide a key-value store interface similar to that of
Bigtable. However, these systems don’t provide any
notion of order across keys (like Bigtable rows) which
makes building an inherently ordered data-structure sig-
nificantly more complex.

5.2 Updating the Data Store
An individual task is stored in a Bigtable row corre-
sponding to its (queue, PID) pair. In this way, tasks in
a given queue are naturally ordered in the Bigtable row-
space, providing efficient access to a priority-ordered
range of the queue via the scan interface. The data in
that row is both the user specified binary data and addi-
tional TaskMaster metadata describing the task’s current
state (either available or leased). This could easily be im-
plemented in a relational database by adding an index to
the (queue, PID) pair for efficient lookup.

To provide correctness, all TaskMaster updates require
a read from and a write to the data store. The read discov-

ers the current state of any referenced tasks, determining
the validity of the request, and the write updates the state
as required. For example, for an enqueue operation, all
the referenced (queue, PID) pairs must be read to check
for existence. If none exist, then they each must be writ-
ten to record their creation.

In the common case where multiple tasks must be up-
dated, writes are done in parallel. This has the poten-
tial to compromise both consistency (upon failure) and
isolation between with concurrent requests. We address
consistency upon failure with a commit log (Section 5.3)
and isolation with lock-based concurrency control (Sec-
tion 5.5).

To avoid some of the writes, we could choose not
to update a task’s state when it is leased to a worker.
This optimization turns out to be premature as it causes
TaskMaster to “forget” the set of leased tasks upon fail-
ure. After restart, it would be free to re-lease those tasks
to new workers causing an unnecessary duplication of
work. This effect is further pronounced for applications
which have many tasks leased at once or whose tasks
take a long time to complete. Further, to enqueue and
dequeue a task requires at least a write and a delete re-
spectively, so removing the intermediate write during a
lease has diminished benefit.

Fast queue deletion is done by attaching a generation
number to each queue. Upon deletion, the generation
number is incremented and all tasks from previous gen-
erations of the queue are ignored. These generation num-
bers are encoded in the task’s row name between the
queue name and the PID. This has the effect of separat-
ing the data backing previous generations of the queue
from the currently active queue. A background thread
lazily reaps the tasks from the deleted queues as these
tasks only use space but don’t effect correctness or per-
formance.

5.3 Commit Log

The primary purpose of the commit log is to preserve
consistency in the face of fail-stop failures of TaskMas-
ter; each TaskMaster node has its own commit log. The
commit log consists of an ordered list of ApplyAtoms,
each assigned a sequential ticket produced by TaskMas-
ter. This ticket is written with the ApplyAtom to the data
store and the largest used ticket is reconstructed after the
commit log is replayed during recovery.

Each ApplyAtom contains a set of enqueues, state
changes, and dequeues as well as a set of (queue name,
available delta, leased delta) triples. These triples serve
to persistently store changes to the total queue size and
leased set size so they can be efficiently recovered on
failure. However, the introduction of these deltas pro-
duces a problem: commit log entries are no longer idem-
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Figure 2: Logical layout of queues and tasks in memory and in Bigtable. Varying task size represents the varying size
of PID and data specified by the user.

potent.

To solve this, we built a replay safe counter which ex-
pects all update deltas to have an associated monotoni-
cally increasing “timestamp”. Thus, any update which
occurred in the “past” with respect to the current value’s
time is rejected as a replay. The ticket number assigned
to an ApplyAtom serves as the timestamp for the counter.
These counters then periodically checkpoint their state
to the data store and update the minimum ticket which
has been successfully applied. The size of checkpoints
is minimized by only checkpointing the counters that
changed since the previous checkpoint.

ApplyAtoms were originally stored directly in GFS
files using the RecordAppend operation [15]. However,
this caused intermittent performance hiccups and record
reordering due to GFS chunkserver failures. Instead, Ap-
plyAtoms are written to sequential rows in Bigtable iden-
tified by their ticket number. We allow ApplyAtoms to
be written to the commit log in parallel for efficiency.
An ApplyAtom is considered committed once it and all
earlier ApplyAtoms have been successfully written.

Recovery is simply a matter of scanning from the min-
imum applied ticket through the end of the range and re-
applying each operation in order. The number of opera-
tions which need to be replayed is a function of the num-
ber of in-progress operations when the TaskMaster died
and frequency with which the minimum ticket is written
to the data store. In practice, a few hundred operations
are in-progress at once and the minimum ticket is written
to the data store every 500ms. This results in fewer than
500 operations to replay on start-up even when TaskMas-
ter is under load. Thus, recovery time is only takes on the
order of a few seconds to complete.

5.4 In-Memory Task Cache
The difference in speed between random writes and ran-
dom reads suggests the use of an in-memory task cache
to conserve reads. Figure 2 illustrates the relationship
between the task cache and the logical structure of the
queues; essentially, the head of each queue is cached.
In particular, the entirety of the task (PID and data) is
cached. Without caching the data, the cache is not actu-
ally saving a read as the client requires that information
during a lease request.

Since we are caching a contiguous range of a priority-
queue, TaskMaster has full knowledge of all PIDs be-
tween the the empty PID (highest priority) and the so-
called “first missing PID”. The first missing PID rep-
resents the lowest PID in the data store which isn’t in
the cache. As tasks get evicted from cache, they place a
gap in this knowledge. So, we update this range of PIDs
to be bounded below by the evicted PID. This informa-
tion serves to eliminate reads during enqueues and avoid
scanning empty PID ranges upon refill.

The naive implementation of this cache would in fact
be multiple caches, one for each queue. In the back-
ground, tasks would be optimistically prefetched into
those caches. However, ensuring fairness among queues
is difficult because the memory allocated to a given
queue changes as that queue’s throughput varies and as
the total number of queues change. That is, the fairness
criteria is not measured in absolute per queue memory al-
location, but rather the number of tasks needed to satisfy
requests for the period between refills by the background
thread. The result is a brittle implementation which suf-
fers from cache starvation for high throughput queues,
and excessive memory usage by queues exhibiting bursty
throughput.
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5.4.1 A unified cache

A simpler implementation would be a single large cache
exporting a map-like interface to allow efficient access
to the inherent queue structure. Keys into the cache
would be a (queue, PID) pairs. A least-recently-used
(LRU) eviction policy alleviates the need to constantly
vary per queue memory allocations. Tasks in queues
which idle long enough will eventually be evicted from
the cache, correctly allocating memory to active queues.
Further, using an on-demand refilling model delays the
read from the data store until its absolutely required re-
sulting in fewer wasted reads. The number of prefetched
tasks is determined by the historical queue throughput
and bounded by a user defined constant to prevent cache
thrashing due to many huge refills.

5.4.2 On-demand cache refilling

An on-demand cache refill is triggered when the thread
processing a lease request notices that the quantity of
cached tasks drops below a threshold. Since the refill
is a relatively expensive operation, requiring a scan of a
Bigtable row range, care is taken to ensure that only one
thread attempts to refill the cache for a given queue to the
exclusion of other threads. Multiple threads attempting
to refill a given queue can occur when multiple workers
issue lease operations on the same queue at once. Once
the cache has successfully been refilled, each lease op-
eration is awoken to acquire a lease on a subset of the
newly cached tasks in parallel. As a result, the tasks ac-
quired by any given lease request would not be the exact
top-k tasks with respect to priority. However, the result
of lease requests from all waiting threads would produce
the top-k tasks in aggregate.

After a cache refill, we set the first missing PID to be
the value of the first PID greater than the set of tasks
retrieved from the data store. If TaskMaster gets fewer
tasks than expected from the scan of the data store, we
assume that we have read the entire queue and a special
token is stored to denote this fact. Further, if all tasks
were read during the previous refill and have since been
completed, future requests to refill the cache can safely
be ignored.

5.4.3 Avoid pinning cached tasks

Since tasks which are leased from a given queue are
likely to be dequeued relatively soon, its tempting to pin
them in the cache. Doing so mitigates the read during
dequeue. However, if a worker fails while holding leases
on tasks, the TaskMaster will continue to pin those tasks
in memory until they expire. Moreover, if many tasks
are leased for long durations (or are continually renewed)
they could tie up all available memory and starve other

queues. As a result, leased tasks are evicted like other
tasks. Even still, they are typically available in the cache
during dequeuing in practice.

5.5 Increasing Concurrency

To provide correctness, the simplest approach would be
to ensure sequential consistency by only processing one
operation at a time. This would result in no parallelism
and poor performance. Instead, we can use a causal con-
sistency model [17], weaker than sequential consistency,
to allow non-causal operations to be processed in parallel
[20].

We define update operations to be causal with one an-
other if the set of (queue, PID) pairs in each update has a
non-empty intersection. That is, there exists some unique
task that is updated in both operations. A lease operation
is defined to be causal with all other operations on the
specified queue only if a queue refill needs to take place.
In that case, the operations need to be causal to ensure
consistent updates to the in-memory cache. Delete queue
requests are defined to be causal with all other opera-
tions on the specified queue. Notice that in the common-
case, where cache refills and queue deletions are infre-
quent, only updates which access overlapping (queue,
PID) pairs are causal; the minimal required causality be-
tween events to ensure consistency.

To implement these causal relationships, we use a
series of reader-writer mutexes: one for each queue,
and one for each (queue, PID) pair. All mutexes are
ephemeral in that they don’t “exist” if no thread has re-
quested a lock (reader or writer) on the given mutex. The
implementation of these mutexes prevent writer starva-
tion in the presence of readers [19].

Both queue refill and queue deletion trigger a write
lock to be acquired on the affected queue, no other locks
need be acquired. Update requests acquire a read lock on
the affected queues in order to enforce causality between
updates and the other operations. Additionally, updates
acquire write locks on all of the affected PIDs to enforce
causality between update operations. Lease operations
read lock the queue before discovery to enforce causality
with other operations. As tasks are discovered their PIDs
are write locked to ensure no other concurrent lease will
acquire those tasks. We impose a lock hierarchy [12]
based on the queue names and PIDs, to avoid deadlock
when acquiring all of these locks. Specifically, queues
are first locked in lexicographic order then PIDs within a
queue are locked in lexicographic order.

The aforementioned locks must be acquired before
their respective operations commence and must be held
for the duration of the operation (including while data
store mutations are outstanding). Since other operations
are blocked while a causally dependent operation is in

7



progress, high contention produces high operation la-
tency. It is a tempting optimization to release the ac-
quired locks once in-memory state has been updated.
However, we assume that the data store is free to re-
order mutations, so we must hold the locks until the data
store has confirmed the durability of a write to maintain
causal consistency. Releasing the locks early also vio-
lates isolation as the latter operation might see the tasks
in some intermediate state. The commit log (Section 5.3)
is required to ensure the consistency of operations in the
presence of TaskMaster failure while an operation is in
the process of being committed to durable storage.

5.6 Lazy Lease Expiration

There is clearly no need to expire a worker’s lease on
a given task if no other workers are interested in leasing
tasks from the containing queue. This suggests a lazy ex-
piration policy triggered by lease operations. We specifi-
cally perform expiration after refills because leased tasks
are not required to be pinned in the cache and thus we
may have discovered an expired task during the refill.
An advantage of this lazy strategy is that TaskMaster is
somewhat forgiving of slight lease violations. For exam-
ple, if a worker exceeds its lease on a task during process-
ing and tries to dequeue that task, it may still succeed.

As expiration may trigger writes, we decrease the per-
formance impact by limiting the expiration frequency to
a user defined maximum, typically 30 seconds. This
choice has multiple side-effects. First, it places an effec-
tive minimum bound on meaningful lease lengths. Sec-
ond, and more importantly, high-priority expired tasks
may not be re-leased until lazily expired some time-
interval later.

This behavior is allowed because lease requests are
only expected to acquire leases on some approximation
of the top-k tasks. In practice, workers tend to set their
task leases pessimistically and the majority of tasks are
completed well within their allotted lease period. Thus,
lease expiration is rare, happening mostly due to worker
failure (the stated goal of lease expirations).

5.7 Scaling

In order to scale TaskMaster beyond a single node, we
partition (or shard) the managed queues by consistency
group. The hash value of a consistency group’s name
determines the owning TaskMaster node. This provides
a somewhat uniform distribution of consistency groups
to nodes. Updates are not allowed to cross consistency
group boundaries and the entirety of a consistency group
resides on a single TaskMaster node. We avoid the need
for a distributed transaction by sharding this way.

To eliminate the need for a client library when
TaskMaster is sharded, workers talk directly to many
well-known stateless proxies, each exporting the same
interface as TaskMaster. Each stateless proxy is aware
of the consistency group to cluster node mapping, and is
able to route updates to the appropriate cluster node. It
is convenient to bundle the proxy with each TaskMaster
node, but since they are stateless, they could conceivably
be run anywhere.

Cluster-wide throughput scales well since each
TaskMaster node in the cluster is functionally inde-
pendent. Currently, additional nodes are added to a
TaskMaster cluster by forcibly restarting all jobs with a
new static sharding. In practice, this form of resharding
is acceptable because TaskMaster can typically experi-
ence brief periods of downtime without any user-visible
effect.

Dynamic cluster resizing could be implemented by
having all cluster nodes participate in a membership pro-
tocol similar to the tablet server membership protocol in
Bigtable. Simpler yet would be a three round member-
ship protocol, as implemented in [26], which avoids the
need for a central master. We can use consistent hash-
ing [18] to assign groups to nodes, to minimize the num-
ber of consistency groups which need to be moved when
adding or removing a node.

An application can achieve increased enqueue avail-
ability by evenly distributing the addition of work among
multiple TaskMaster nodes or even multiple TaskMaster
clusters. Removing a single point of failure from the en-
queuing path in this fashion is most important for delay-
intolerant applications when the enqueuing operation can
be triggered by a user action. After the initial task has
been enqueued, the rest of processing would proceed as
normal. Most applications which can be mapped onto
TaskMaster can leverage this form of partitioning to gain
availability.

6 Performance

To measure the performance of TaskMaster, we use a sin-
gle TaskMaster node being accessed by N worker pro-
cesses with K threads per process. Each worker process
confines its operations to a set of queues disjoint from
the queues accessed by other worker processes. How-
ever, threads in each process produce operations on the
same queue and perhaps even the same PID. Each worker
in these tests represents a pool of workers enqueuing
and/or processing tasks from a single logical application-
defined stage. We only test a single node because we are
particularly interested in single server performance; the
performance of a TaskMaster cluster depends directly on
the performance of individual nodes.

The TaskMaster is typically allocated 1GB of memory
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Figure 3: This log-log plot shows the median latency of
enqueue operations as function of their collision likeli-
hood. Various different consistency strategies are com-
pared. Error bars are 80th and 20th percentile latency.

for it’s cache unless otherwise noted. The Bigtable clus-
ter backing the TaskMaster contained 20 tablet servers
allocated sufficient memory. The TaskMaster, Bigtable
cluster, and all of the worker nodes each ran on separate
machines in the same datacenter. As a result, network
round-trip time between any worker and the TaskMas-
ter was less than a millisecond. Network bandwidth was
more than sufficient as each task’s data payload was only
1KB. Each machine had two dual-core Opteron 2GHz
chips and sufficient physical memory for their respective
processes.

6.1 Effect of Optimizations

We have suggested a number of optimization to
TaskMaster to improve performance. Each of these are
evaluated using benchmarks specific to those optimiza-
tion to tease out the effects on system throughput and
latency.

Causal Consistency

The consistency benchmark evaluates the performance
of causal consistency in comparison to strict sequential
consistency. The likelihood of colliding (queue, PID)
pairs is varied and the average operation latency is mea-
sured. The upper bound on update operation latency in
the causal consistency model is shown by evaluating par-
tially causal consistency which considers any updates op-
erating on the same queue to be causal. In this test, we
used 10 workers with 50 threads per worker, each issuing
updates to a single TaskMaster.
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Figure 4: This log-log plot shows the median number
of Bigtable read/sec as a function of TaskMaster’s cache
size.

Enforcing strict sequential consistency causes signif-
icant update latency for any contention value, as illus-
trated by Figure 3, since this consistency model consid-
ers all operations to collide. Partially causal consistency
reduces update latency by more than 4-fold as each of
the 10 workers are allowed to proceed in parallel since
they update non-overlapping queues. There still exists
contention amongst threads within a given worker caus-
ing all updates from a given worker to collide. True
causal consistency provides another near 10-fold im-
provement in latency for small values of contention and
is bounded above by partially causal consistency as ex-
pected. Sources of jitter in latency, as shown by the error
bars, were caused by GFS hiccups propagated through
Bigtable as increased mutation latency.

Caching

The cache benchmark measures frequency of cache
misses which in turn result in Bigtable read operations.
Leases are acquired in batches of 50 from 500 queues
using 50 worker processes with 10 threads each. The
cache size is varied and TaskMaster adaptively varies the
number of prefetched tasks. The number of cache misses
dramatically decreases once the cache is of any reason-
able size, as shown by Figure 4. Increasing cache size
beyond 10MB under this load yields diminishing returns
because the cache utilization decreases. For this test,
only a 47MB cache is required since tasks are 100 bytes
and approximately 1000 tasks are cached with each refill
of the 500 queues. As expected, the miss rate does not
drop any further after the cache reaches this size. The
cache miss rate never drops all the way to zero because
queues occasionally require refilling.
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Experiment tasks/sec variance
enqueue 1630 13.6%
FIFO enqueue 2386 8.7%
lease + dequeue 1485 6.8%

Table 1: The number of single-task operations per second
enqueued, leased, and dequeued in aggregate across all
workers.

In practice, it is common for TaskMaster to be allo-
cated upwards of 2GB of memory for caching. Typi-
cal TaskMaster instances have significantly more active
queues, so a larger cache reduces the number of prema-
ture evictions. At any given time, these systems use more
than 90% of their alloted memory resources. Limiting
these evictions has a direct impact on latency of lease
operations as they won’t have to perform a Bigtable read
to acquire tasks.

Single Node Throughput

The throughput benchmark measures how many sin-
gle task updates per second can be applied to a single
TaskMaster node. This is a common use-case for latency
sensitive applications which can’t afford to delay oper-
ations while accumulating tasks to batch together. This
benchmark uses 50 workers with 10 threads each. Ta-
ble 1 shows that FIFO enqueues are the highest through-
put operation as they only require a single Bigtable write.
We don’t require a read in this case because the PIDs are
known to be unique. Recall, normal enqueues require a
read and a write, FIFO enqueues only require a write,
leases require a scan only when refilling the cache, and
dequeues require a read when the previously leased task
was evicted from the cache and a write.

We also see that lease and dequeue operations (per-
formed in two sequential RPCs) have a similar through-
put with respect to an enqueue operation (only a single
RPC). This is explained by the fact that Bigtable random
reads are slower than writes. Typically, lease and de-
queue operations would be separated by some expensive
processing step which we ignore because we are simply
testing system throughput. Additionally, there is a fixed
number of tasks which can be leased from a queue at
once. This is the same user-defined value for the max-
imum refill size which was previously used to prevent
cache thrashing. As a result, we must pair lease and de-
queue operations for this benchmark to make progress.

The large variance for the enqueue operation can be
explained by GFS hiccups propagated through Bigtable
and exacerbated by having to commit log each operation
before execution. Reads are more susceptible to these
sort of irregularities since a read requires Bigtable to read
part of an SSTable from GFS. In contrast, writes need
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Figure 5: These log-log plots show the effect of bulk op-
erations on 5(a) throughput and 5(b) and latency when
varying the batch size. Points are artificially offset for
clarity.

only write to the Bigtable commit log which has mecha-
nisms in place to lessen the impact of this exact event.

Bulk Operations

TaskMaster supports the batching of multiple updates
into a single request to increase the throughput of the
system. This reduces the per task overhead by amor-
tizing the network round-trip, RPC parsing, and commit
log delay incurred by each operation over all the tasks
contained in that RPC. TaskMaster also allows lease re-
quests to lease multiple tasks from multiple queues at
once. This facility makes interacting with large quanti-
ties of queues more efficient.

For this test, we again used 50 processes with 10
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threads each. Depending on the mode, they either en-
queued work or leased and subsequently dequeued work
from 10 distinct queues. Figure 5(a) shows that as we
increase the batch size, throughput for each type of op-
eration increases up to some threshold. The maximum
throughput is bounded by the average mutation latency
and the number of threads in TaskMaster. Increasing the
number of TaskMaster threads has diminishing returns as
context switching between threads begins to leach per-
formance.

We can see that FIFO creates exhibit the highest
throughput and lowest jitter because they only require
a write. Lowest throughput is the lease and subsequent
dequeue because those operations requires two sepa-
rate RPCs and subsequently two commit logs and two
Bigtable writes.

The latency for enqueue operations is elevated rela-
tive to lease, as seen in Figure 5(b), due to the relative
slowness of random reads in Bigtable. This effect is also
visible in the significant variance in enqueue throughput.
We only measure the latency of lease operations as the
subsequent dequeue operation exhibits the same latency
properties as the enqueue operation. Lease operations are
expected to be fast as they are serviced largely from the
cache and only require a commit log write. The variance
is caused by occasional cache refills.

6.2 Queue Isolation

TaskMaster strives to ensure fairness of resources allo-
cated to queues and the liveness of a worker’s operations.
To measure this, we induce load on the TaskMaster by
having up to 10 workers, each with 50 threads, issuing
updates containing 50 tasks to 10 distinct queues. We
then have a lone single-threaded worker dequeuing tasks
from a previously filled queue. We limit the cache’s size
to 10MB to put added pressure on the cache. As we can
see in Figure 6(a), the single worker’s throughput is sig-
nificantly effected by the first few loading workers, but as
more of them are added, there is a diminished effect. Af-
ter the addition of the sixth, the single-threaded worker’s
performance doesn’t degrade any further.

This effect on performance is caused mostly by in-
creased write latency. As more loading workers are
added, the number of total operations per second pro-
cessed by TaskMaster increases. Similar to bulk opera-
tions, the maximum throughput is bounded causing la-
tency to increase. Once this bound is reached, perfor-
mance doesn’t degrade any further.

We also measure the number of cache refills per
minute for the relatively inactive queue to determine if
the queue is being allocated a sufficient amount of the
cache’s memory. We can’t directly measure the number
of tasks queued because that value fluctuates as tasks are
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Figure 6: These plots show the effect on 6(a) through-
put and 6(b) cache refills that a varying number of 50-
threaded enqueuing processes has on a single-threaded
dequeuing process and associated queue.

dequeued and the cache is refilled. Figure 6(b) shows
that the queue’s cache refill rate does not increase signif-
icantly in the face of additional load on the TaskMaster.
This confirms that TaskMaster is fairly distributing cache
resources amongst the queues even with a large discrep-
ancy in operation rate.

6.3 Cluster Performance

To measure performance of TaskMaster clusters, we vary
the number of running TaskMaster nodes in a given clus-
ter and measure aggregate throughput. Each TaskMaster,
has 50 worker processes with 10 threads each producing
load. In this case, we use a batch size of 50 tasks per
operation. This was shown to have good throughput and
latency properties by Figure 5. A single Bigtable cell
consisting of 20 tablet servers held the Bigtables associ-
ated with the TaskMaster nodes.

We see in Figure 7 that aggregate throughput of ran-
dom and FIFO enqueues scales almost linearly with the

11



●

Cluster Size (nodes)

U
pd

at
e 

R
at

e 
(t

as
ks

/s
ec

)

1 2 3 4 5 6 7 8 9 10

10K

20K

30K

40K

50K

60K

70K

80K

90K

100K

110K

●

●

●

●

●

●

●

●

●

●

●

●

FIFO Enqueue
Enqueue
Lease + Dequeue

Figure 7: This plot shows the aggregate throughput of
various operations as a function of cluster size. Points
offset for clarity.

number of TaskMaster nodes. However, the aggregate
throughput of lease and dequeue operations seems to be
significantly sub-linear. Recall, we are performing a de-
queue operation in addition to a lease operation. Since
the latency of a lease operation is about half that of a en-
queue/dequeue operation, we expect their combination
to take 1.5 times longer than an enqueue. As a result,
the throughput of enqueues is approximately 1.5 times
higher than the throughput of lease and dequeue opera-
tions.

We also see the variance in throughput increasing
somewhat sublinearly. These beneficial effects come
from Bigtable latency spikes non-uniformly effecting the
TaskMaster nodes. Thus, the detrimental effect of these
spikes are essentially amortized over the cluster.

7 Example Applications

TaskMaster was originally designed for a structured data
extraction application. The system consists of a number
of stages which serve to fetch the documents, extract the
structured data and links, uniqify and canonicalize links,
and finally push the extracted data into an index. The
new unique links found on a given page are fed back into
the fetching stage and the cycle continues. In this appli-
cation there are over 100 worker nodes and TaskMaster
is managing O(800M) tasks across O(20K) queues.

Another application using TaskMaster measures the
quality of ads served in response to queries. It is com-
posed of a number of multi-stage FIFO pipelines and a
set of queues used for coordination. First, a task is en-
queued into the fetching coordination queue. A worker
leases this task and enqueues a number of query tasks

into the first pipeline where they are issued and post pro-
cessed. Once that pipeline has drained, the task is de-
queued from the query queue and a task is enqueued into
the process queue atomically. This triggers further ag-
gregate post processing of the queries results, and upon
completion enqueues a task into the loader’s queue. Fi-
nally, the loader takes the processed information and
stores it into various repositories for wide-spread con-
sumption. A single TaskMaster manages many such
complex flows as multiple query sets are executed in par-
allel.

Google Docs uses TaskMaster to decouple the user ac-
tion of requesting a document conversion from the doc-
ument conversion mechanism itself. User requests are
enqueued in one of many running TaskMaster instances
such that a single TaskMaster node failure doesn’t pre-
vent users from requesting a document conversion. A set
of workers lease tasks and send them to a pool of docu-
ment converters. Upon completion, the worker stores the
result in the appropriate location and dequeues the task.

The task is dequeued and a new task is enqueued in
a backoff queue should a conversion fail for any reason.
Exponential backoff is modeled by having multiple back-
off queues, each representing some number of sequen-
tial conversion failures. Tasks enqueued in these backoff
queues are given a PID representing an exponentially in-
creasing time in the future dependent on the number of
sequential conversion failures. Workers attempt to ac-
quire leases on tasks whose PID is at most the current
time so that these tasks are not leased until the backoff
time expires.

In rare cases, a request is denied after some number
of sequential failures. By bounding the maximum time
a request remains in the system, this mechanism pro-
tects against requests that inadvertently trigger a bug that
causes a failure in the conversion application. This event
would be captured by the task’s worker and would pre-
vent future replays.

8 Related Work

TaskMaster’s data model is similar to the transactional
model proposed by [9]. They suggest the decomposi-
tion of long duration activities, like accounting for a day
of purchase orders or crawling a website, into many in-
herently serial subactivities which can be run in parallel
on multiple machines. The TaskMaster model takes this
decomposition a step further, suggesting that these indi-
vidual subactivities can be further partitioned into a se-
quence of stages to simplify application construction and
provide better system transparency.

Linda [14], and more recently JavaSpaces [22] and
TSpaces [21], suggest the use of unstructured tuple
spaces a means of distributed communication and coor-
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dination. Instead of providing an arbitrary tuple store,
TaskMaster imposes a priority-queue structure on this
model providing an explicit order amongst tuples. Thus,
tuples retrieved by workers are the highest priority tasks
in a given queue rather than arbitrary tuples identified
by their structure. Like tuple spaces, producers and
consumers of given queues are decoupled both in time
and space. TaskMaster also provides exclusive leases,
stronger than the non-destructive read() primitive, as
an additional coordination mechanism to prevent multi-
ple workers from executing the same task.

Message Oriented Middleware [3] uses messages as
the mechanism to allow existing application to easily
communicate and coordinate. They suggest the use of
messages as the glue to connect such systems with min-
imal modification to the existing application’s design.
TaskMaster is an instantiation of a Message Oriented
Middleware system. In TaskMaster-based applications,
tasks are the analog to messages as the glue to connect
stages of processing pipeline together. Unlike messages,
however, tasks are expected to be units of computation
as opposed to event notification. Additionally, tasks have
an order as defined by PIDs instead of the simple FIFO
order given to messages.

SEDA [28] decomposes server-side processing of
users requests into multiple stages. It uses queues to
coordinate parallel execution of these stages in multiple
server threads. TaskMaster extrapolated this mechanism
to multiple processes, using queues to connect stages of
processing. SEDA applications, such as the described
HTTP server and a packet router, typically have real-
time latency constraints. In contrast, typical TaskMas-
ter applications only have strict latency requirements for
enqueue operations, other operations have more flexible
latency constraints.

TaskMaster is slight generalization of various pub-
lish/subscribe messaging systems surveyed in [13]. Both
publish/subscribe and TaskMaster provide a means of
process communication and coordination. However,
publish/subscribe systems are aware of the set of pub-
lishers and subscribers and actively push message from
publishers to the set of subscribers. TaskMaster has no
knowledge of the produces and consumers of tasks, sim-
plifying its construction and allowing for more work-
ers. Consequently, TaskMaster tolerates consumer fail-
ure more gracefully; it simply leaves tasks enqueued
until an interested worker dequeues them. Many pub-
lish/subscribe implementations have a fixed period dur-
ing which they try to notify subscribers about the pres-
ence of a message. If some subscribers don’t respond,
messages may be dropped.

TaskMaster supports many queues as it anticipates ap-
plications to have many parallel pipelines, each consist-
ing of several queues. In contrast, publish/subscribe sys-

tems expect that messages are published to a relatively
small number of channels or topics. A publish/subscribe
system could, in fact, be built using TaskMaster. Each
channel would be associated with one or more TaskMas-
ter queues. Publishers would enqueue messages into
those queues and a pool of workers would be respon-
sible for dequeuing and disseminating those messages to
subscribers.

Several commercial software vendors have developed
queuing systems similar to TaskMaster. The Java Com-
munity Process program defined the Java Message Ser-
vice interface [16], a generic interface to such systems
which provide both FIFO queuing and publish/subscribe
mechanisms. WebSphere MQ [8], previously known
as MQSeries [5], Oracle Advanced Queuing [25], and
Sun’s Java System Message Queue [23] all imple-
ment this interface and have varying scaling, security,
and queue/channel administration properties. Security,
namely queue access controls, is not a goal of TaskMas-
ter, and administration of TaskMaster is simplified by
ephemeral queues and efficient queue deletion.

DECmessageQ [7] provides multi-reader queues
(MRQs) which either use a fixed set or priorities or FIFO
for ordering. Amazon SQS [2] is the simplest system,
only providing approximate FIFO ordering semantics.
Also, messages in SQS have a fixed lifetime of 4 days
because it is a shared service. None of these commercial
systems provide the flexibility of free-form user specified
PIDs nor to they provide leases to help tolerate consumer
failure.

A sequences of MapReductions [10] could be used to
build applications similar to those enabled by TaskMas-
ter. The benefit of using TaskMaster is the parallelism of
the different processing stages (here modeled as different
MapReductions). By allowing all stages to process tasks
at once, the latency of the logical computation (from the
first enqueue until the final dequeue) is significantly re-
duced.

9 Conclusion

We have described the design and implementation of
TaskMaster, a reliable queuing system used to simplify
distributed system development. We have illustrated
the power of PIDs to create meaningful queue order-
ings. Task leasing was shown to help applications re-
duce work duplication and better tolerate machine fail-
ure. We explained how atomic queue operations com-
bined with causal consistency allow users to easily rea-
son about TaskMaster without sacrificing performance.
We described how to fairly distribute cache resources
among a number of queues and how to limit data store
reads by caching a contiguous range of tasks. Finally,
we showed how simple queue statistics, like enqueue and
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dequeue rate, can help direct application debugging and
optimization.

The versatility of TaskMaster’s model is shown by its
use in production over the last year for a variety of dis-
parate applications. Our users appreciate the simplic-
ity of the interface and the transparency provided by
the queue statistics. TaskMaster is an excellent tool for
building distributed systems, and we anticipate its con-
tinued use in the years to come.
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