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Abstract

There exist many natural phenomena where direct measurement is either impossible or extremely
invasive. We propose using imagers as sensors by constructing a procedure that uses images to
obtain approximate measurements of these phenomena. This procedure, composed of state-of-the-art
computer vision, image processing, and statistical learning algorithms, will be evaluated in the context
of a specific application and shown to be general through multiple instantiations. We show through
application, that many of these algorithms make unacceptable assuptions about their input. We will
describe a methodology that can be used to augment existing algorithms, making them robust to
field conditions present in ecological applications. In this paper, we rigorously define the proposed
procedure and begin to evaluate its accuracy in the context of an example application.

1 Introduction

There are many important natural phenomena that traditional sensors cannot measure directly. For
example, accurately measuring a plant’s rate of photosynthesis (release or absorption of CO2) requires
encasing part or all of the plant in a chamber. Then, air entering and leaving the chamber is compared
to measure instantaneous CO2 flux. Such measurement is error prone and must be frequently cali-
brated, making long term deployment difficult. Additionally, such an apparatus is clearly too bulky
and invasive to be used in a field environment.

Visible-light imagers represent a very powerful and untapped sensing modality. When direct mea-
surement is difficult, imagers are the missing input required to accurately model natural phenomena.
Images are typically avoided in traditional sensing applications because they produce large quanti-
ties of uncalibrated data. The form of calibration required for an imager-based ecological sensor is
dissimilar to that of typical sensors; there is no conveniently accessible reference that can be used to
calibrate an imager used as a CO2 sensor, for example. We aim to use state-of-the-art computer vision,
image processing, and statistical learning algorithms to build a two step imager calibration process
(Figure 1) that can be evaluated in the context of a specific application. First, image features must
be extracted that are both domain relevant and immune to changing field conditions. Second, these
features are used to model the signal of interest as measured in a controlled laboratory environment.
Additionally, this model will also be informed by traditional ecological sensors suggested by structure
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Figure 1: This diagram shows the two parts of imager calibration. First, field condition invariant image features are
extracted from images. Second, laboratory data is acquired as ground truth for off-line the signal modeling. Together, both
elements are used to calibrate the imager.

of the ecological system. Since each process instantiation is somewhat application specific, we intend
to show, though multiple applications, that the process itself is general.

In order to perform meaningful feature extraction, we must account for the spectral response char-
acteristics of the CCD (charge coupled device) or CMOS (complementary metal-oxide semiconductor)
sensor as well as the spectral power distribution (SPD) of the incident light. The general form of this
calibration, known as color constancy [33], has traditionally been difficult. Various computer vision
applications, such as object recognition and image segmentation, would benefit if such calibration
could be performed accurately in general. In our applications, we are free to fix the location of the
observer (relative to the subject) as well as the subject itself. In particular, we can produce accu-
rate models of both in the incident illumination and subject’s spectral reflectance. These simplifying
assumptions make this specific instantiation of the color constancy problem more tractable.

Once invariant image features have been extracted, they must be correlated to the signal of interest.
Deriving such a correlation requires the construction of a model based on experimentally acquired data
from imagers as well as co-located traditional sensors. In the case of photosynthesis measurement,
temperature, PAR (photosynthetically active radiation), and rainfall sensors are of particular use.
Including traditional sensors, in addition to the imager, has two important benefits. First and foremost,
we can use sensing modalities that are correlated with the phenomena to increase prediction accuracy.
Second, by incorporating field-deployable sensors into the model, we can more easily reason about the
model’s accuracy under field conditions.

We choose to use color-based image features because they are relevant to many ecological appli-
cations. Statistical models using color-based image features can be trivially built by quantizing the
observed color distribution, making each unit an independent variable. However, the introduction of
many variables into a regression algorithm causes a polynomial increase in runtime. We show how
to take advantage of the fact that these variables are actually dependent to make the runtime linear
in the number of image features and potentially increase the model’s accuracy. Further, by consid-
ering the variables to be dependent, we reduce the number of input dimensions, helping to avoid the
curse of dimensionality [5] that would be present when considering these features to be independent.
Performing regression on high-dimensional, highly structured input, such as color distributions, is one
complication that has come up immediately. We expect that other such problems will arise while
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generalizing our procedure.
Once devised, we must evaluate the prediction accuracy of the model. This is somewhat com-

plicated by the fact that ground truth data is unlikely to be available. By using a combination of
laboratory experimentation, internal consistency checks, and other environmental cues we can lever-
age domain relevant information to evaluate our results. The design of the laboratory experiments
is especially important. We must capture environmental signals easily measured in the field so as
to corroborate the laboratory findings. Though each instantiation of this evaluation is unique to the
application, we will show, through multiple applications, that the nature of this evaluation technique
is general.

One particular application of ecological interest is the measurement of a drought-tolerant moss,
Tortula princeps. This moss has the interesting ability to hibernate when conditions are not favorable
for its growth. Ecologists are curious why it is not more prevalent in dry climates for which it seems
well suited. This particular problem lends itself nicely to the use of imagers because it has been shown
[50] [19] that a plant’s photosynthetic respiration is related to its spectral reflectance. Further, this
and other moss can be reliably modeled in the laboratory and are quite representative of other higher-
order plant species [42]. Previous work [40] showed that the photosynthetic respiration of plants would
remain at its maximum if it weren’t limited by the ambient temperature or the availability light and
moisture. Though temperature and light sensors can easily be deployed, moisture measurements are
far more complex. Simple thermocouples on the surface of the plant are insufficient. Instead the plant
must be destructively measured by removing it from its habitat and its weight compared against a
reference dry weight. Thus, for continuous measurement in the field, an imager is an ideal choice of
sensor.

1.1 Imager-Based Sensing Applications

There is a large class of sensing applications that can make use of calibrated imagers. We define
the subset of applications we consider using a series of suggestive questions. Though this list is not
exhaustive, it describes the application characteristics leveraged by our process.

Is an imager the most natural sensor for the phenomena?
For many applications, an imager is the most natural sensor of the phenomena. For example, de-
tecting birds flying past an imager [29] or counting the number of eggs in a nest [1]. Alternatively,
the target signal could be logically encoded in image features that are not easily discerned by a
human. Thus, using a traditional vision approach, like object detection or image segmentation,
is a non-starter. This criteria defines whether the solution will employ mostly computer vision
or signal processing techniques. For this work, we consider applications for which an imager
is not the most natural sensor. This choice enables us to consider the space of solutions that
require what we call applied vision. This entails applying the physics-based modeling of image
formation, as developed by the vision community, to help calibrate the imager and model natural
phenomena.

Which spectrum of light is measured by the imager?
Though all frequencies of light from infrared to ultra-violet are of some ecological interest, the
visible range has been found to be particularly useful for measuring many phenomena [19] [27] [20]
[38] [12]. In this work we confine our measurement to the visible range. This has the additional
benefit of allowing for the use of commercially available digital imagers. Current digital imagers
use CCD or CMOS sensors that are most sensitive to light in the visible range (400nm – 700nm),
and their dynamic range is bandwidth limited by various filters [49]. Intrinsically, these sensors
have a dynamic range that extends beyond the visible range into near-infrared as well as ultra-
violet and could, in principle, be used as a sensor for those spectra as well.
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Event detection or process estimation?
Interest in ecological phenomena broadly falls into two categories: event detection and process
estimation. We choose to focus on process estimating, attempting to derive a continuous signal
as a function of the imager’s output. There are a variety of application-dependent simplifying
assumptions that can be made when estimating these processes. For example, they typically have
memory, implying that the target signal is continuous. This suggests that the time dimension
of the model’s input can be used to reduce the prediction error. As a result, our estimation
procedure is much different than trying to use an imager to detect vegetation in a field [36] or
weeds in a potato patch [48]. Still, imager calibration techniques are common to both event
detection and process estimation.

Which image features are extracted?
There are many features that could be extracted from images. Some features, like texture, are
somewhat independent of lighting by nature. Other features, like color, intensity, or radiance are
significantly affected by the incident illumination. We consider applications where the relative
spectral reflectance of the subject over the visible range, a metric related to color, is the most
informative feature. This feature has been widely used in everything from soil versus vegetation
classification [36] to detecting the presence of clouds [47].

Is ground truth data available for field imagery?
Modeling these systems is greatly simplified if the target signal can be measured in the field for
a short period, producing ground truth for future modeling. Though this is sometimes possible,
we consider the more general case where such field measurement is not possible. In these cases,
laboratory experiments must function as surrogates for data collection in the field. As such,
they must be shown to sufficiently capture the space of important inputs to the ecologically
process. The resulting model must be evaluated using properties of the ecological system, to
place a bound on prediction error. For example, previous work [40] attempting to measure the
rate of plant photosynthesis used the fact that plant growth (as measured by leaf area) is related
to the integral of carbon uptake over time (the result of photosynthesis).

Modeling a single- or multi-valued signals?
Ecological processes can be defined by a set of measurable responses to their environmental input,
some of which may be dependent on one another. We focus on applications that are interested
in single-valued signals that are partially dependent on various easily-measurable environmental
inputs. In the future we plan to consider applications that require a single signal be predicted
over a 2-dimensional area. One particular application is predicting soil surface temperature
throughout a meadow. We initially aim to model single-valued signals because they are a simpler
regression targets and are easier to validate in the field.

Vantage point: in-situ or remote imaging?
Remote imaging, from satellites or planes, has produced excellent insight into large scale ecosys-
tem processes [51]. However, even with high resolution imagers, single image pixels may represent
tens or hundreds of meters. As a result, their predictions are necessarily general as acquiring
ground truth to calibrate these measurements is difficult. We choose to focus on local mea-
surements acquired from in-situ imagers because they have the potential to be more accurately
calibrated using laboratory experiments. This work defines a process of imager calibration tar-
geted at in-situ imagers similar in spirit to processing techniques used to derive meaning from
remote imagery. The data acquired from in-situ imager deployments can then be used by the
remote sensing community as ground truth to further refine their predictions.

Are domain-relevant sensors co-located with the imager?
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Ecological processes are affected by a variety of different inputs, some more easily measured than
others. For example, the rate of plant photosynthesis is known to be affected by the availability
of temperature, light, and moisture [40]. We can easily measure temperature and light using
traditional sensors that can be deployed in the form of micro-meteorological stations. Further,
by measuring these signals both in the field and during laboratory experiments, we can more
easily reason about the model’s accuracy. For these reasons, we choose to focus on applications
that have meaningful co-located sensors in field deployments.

What is the expected sample frequency?
Currently, ecologists can sample environments of interest at a monthly or weekly frequency. As
a result, models based on these data collection efforts cannot make predictions with greater than
one month resolution. We attempt to collect data multiple times an hour, allowing predictions
based on these data to have a resolution of hours. This allows ecologists to study an entirely
new set of phenomena that occur over the course of a few days. For example, measuring the
effect of a summer rain event on moss photosynthesis. These events are known to be important,
but have traditionally been incredibly time-consuming to measure.

1.2 Application Driven Innovation

Building image-based ecological sensors is a driving force for innovation in both sensor networking
and computer vision. Traditionally, sensor networking has always endeavored to solve real application
problems and innovate by adapting best-of-breed algorithms to the specific task at hand. Similarly,
our approach to building an image-based sensor leverages the best available vision algorithms and
innovates in areas where those techniques perform poorly. We anticipate further innovation through
the reuse of this process for different ecological applications.

1.3 Contributions

• Application evaluated image-based sensor toolkit: Define a procedure to correlate images
to ecological signals of interest using a series best-of-breed computer vision, image processing, and
statistical learning algorithms. We will evaluate the prediction accuracy of this procedure in the
context of a specific application, showing how to leverage intrinsic properties of that particular
instantiation of the process. Further, we will show the generality of the procedure though its
use in multiple applications. Using this procedure we intend to measure photosynthesis of a
drought-tolerant moss, Tortula princeps, to help ecologists understand its habitat requirements
and long-term grown trends.

• High-dimensional, highly structured data as regression inputs: Devise the set of alter-
ations required to allow standard non-linear regression techniques to make use of high-dimensional,
highly structured data. This will significantly decrease their worst-case complexity and poten-
tially increase their accuracy.

• Field-robust algorithms and methodology: We have found that the many of the best-of-
breed algorithms make unacceptable assumptions and require modification. For example, the
JPEG compression appears to interfere with the re-lighting algorithm described in Section 3.3.
More generally, we intend to articulate a methodology for making algorithms robust to the field
conditions present in ecological applications.
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1.4 Putting the work in context

Our proposed procedure has many characteristics in common with research in the agricultural en-
gineering field. This research attempts to use images to monitor crop health, increasing yield by
detecting problems quickly. For example, detecting weed growth in crop fields has long been a prob-
lem for the agriculture industry. A review of recent literature [9] suggests that there has been a shift
from using remote imagers to in-situ imagers. Though remote imagers, typically in aircraft, have
success detected weeds when the patches are dense and uniform in color, they have trouble detecting
small patches because of their low resolution. In contrast, in-situ mobile imaging devices have had
more success detecting smaller patches of weeds growing amongst the crops. One particular system de-
veloped by Slaughter et. al. [48] approaches this classification problem from first principles. Like our
formulation, they use the physical model of image formation in an attempt to build lighting invariant
color features. Additionally, they used shape and texture features as suggested by their application.

Techniques for dealing with natural lighting conditions from a machine vision perspective are
discussed in a series of works by Marchant et al. [36] [35] [34]. Set in an agricultural context, they
attempt to modify existing vision algorithms to better distinguish soil from vegetation. Similar to our
procedure, they choose to use the distribution of sensor values as input their model since the possible
subjects have very different spectral reflectance characteristics. In their case, the model was a binary
classifier since they were interested in a binary signal. They approximate the spectra of daylight using
an idealized black-body radiator and approximate the spectral sensitivity of the camera sensors as
impulse functions. A transformation was constructed, based on a ratio of sensor responses and other
factors, which rendered their images sufficiently independent of changing illumination. Finally, they
showed that this transform effectively separated field imagery of soil and vegetation. Unlike our goal,
this and the previous system attempt to build binary classifiers of the image’s subject. However, the
techniques they use (further discussed in Section 3) are applicable to our process formulation.

The goal of our work is similar in to much of the research in the environmental monitoring field.
Unlike our work, however, typical research in that discipline performs rudimentary analysis of the
images, ignoring the physical models of image formation. A representative work is the environmental
monitoring system described by Crimmins et. al. [12]. It attempts to measure relative vegetation
coverage by producing a “greenness” signal from a sequence of images. This signal is simply computed
using the difference between the mean value of the color channels. They show that even this simple
image feature tracks the increase in plant coverage over a three month period relatively well. However,
this feature began to loose stability once the image became shaded by the canopy’s growth. In fact,
the system that inspired our work [20] used a similarly simple feature (average red-to-green ratio) to
predict moss CO2 uptake. However, they were only able to accurately predict relatively large values
of CO2 uptake. They posited that for small values of the target signal, there was less variation in the
image and thus a simple average ratio was insufficient.

The remote sensing community approaches this sensing problem from a signal processing perspec-
tive. Common practice in these works has been to devise an image feature that is linearly related
to the signal of interest. To some extent, this is the inverse of the environmental monitoring field’s
approach; instead of hypothesizing a feature using domain knowledge and measuring the correlation,
they derive a feature which is defined to be well correlated. For example, the Dark Green Color Index
(DGCI) [27] attempts to measure the species and health of commercial turf grass fields. The Damage
Sensitive Spectral Index (DSSI) [38] tries to measure the damage to a wheat crop caused by weather or
insects. By far, the most common feature is the Normalized Difference Vegetative Index (NDVI) [46]
and its two close derivatives, the Soil-Adjusted Vegetation Index (SAVI) [23] and the Atmospherically
Resistant Vegetation Index (ARVI) [28]. These indexes attempt to measure how much live, green veg-
etation is present in an image. Our work tries to strike a balance between the data-driven approach
of the remote sensing community and the theory-driven approach of the environmental monitoring
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Figure 2: The process we propose consists of the two logical parts depicted here: device calibration and signal estimation.

community. We do this by imparting structure to the procedure rooted in theory while allowing the
models to adapt to the data.

Similar hybrid approaches are seen in the remote sensing literature. For example, the satellite-
based Multiangle Imaging SpectoRadiometer (MISR) [32] system attempts to detect the presence of
clouds and cloud thickness using visible light and infrared imagery. They used image features based
on radiance (the reflective characteristic of the subject) because they know that there is a significant
difference between in energy reflected by land and the energy reflected by clouds. More recent analysis
[47] of data produced by that satellite produced binary classifiers based on SVMs to identify features
feature were most useful when attempting to distinguish ice sheets from clouds; both of which have
very similar radiance.

Like MISR, the river morphology measurement system developed by Legleiter et. al. [31] takes a
hybrid approach to feature selection. The purpose of this system was to derive the depth of a river
channel from visible-light imagery. Informed by the application, they choose to extract the log-ratio
of color band pairs. These pairs were selected such that one band had much greater attenuation in
water than the other. As a result, the log-ratio of these values is sensitive to the river’s depth and less
effected by suspended sediment. A model, calibrated against field measurements, was then derived by
linearly transforming the log-ratio.

Our work leverages the best that these distinct communities have to offer, producing a image
processing toolkit suitable for in-situ imagers. The features we select are domain relevant but the
phenomena are modeled using non-linear techniques. The sensing system we propose takes advantage
of inexpensive, readily deployable, visible light sensors. Compared to satellite- or plane-based remote
imagers, they have much higher temporal and spatial resolution. Unlike the trend in the agricultural
engineering community, we believe that remote and in-situ imagery can easily work harmoniously to
measure natural phenomena. A combined approach where data from a remote sensing applications can
trigger the deployment of localized in-situ imagers would be mutually beneficial. This takes advantage
of the significant strengths of each technology: the large coverage area of remote imagers, and the
higher spatial resolution of in-situ imagers.

This work also draw heavily from the compute vision and statistics community. We discuss work
related to image formation and illumination modeling in Section 3 and Section 3.2 respectively. Ad-
ditionally, we discuss work related to reformulation of non-linear regression to use high-dimensional,
highly structured data as inputs in Section 4.

2 Procedure Overview

Calibrating an imager for use as a sensor requires two fundamental steps: device calibration and
target signal modeling. The process we propose, depicted in Figure 2, is constructed from a series of
models that eventually produce the signal of ecological interest. We choose this configuration both
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because it is suggested by the physical model of image formation and because it allows us to easily
reuse existing algorithms. The interface between device calibration and signal estimation models is
the relative spectral reflectance of the subject. As previously discussed, we assume that this feature
is relevant to the signal of interest.

The state-of-the-art vision algorithms we use to form the various models were formulated indepen-
dently. Some are formulated in a regression context, and others are formulated in a Bayesian context.
Additionally, they make vary physical assumptions about the lighting, subject, and camera. As a
result, their combination in our framework a bit awkward. In future work, we intend to sort out this
inconsistency, placing all the stages of our procedure on consistent theoretical ground.

The remainder of the paper is organized as follows. Section 3 discusses lighting modeling and
estimation as well as reflectance modeling and estimation. Section 4 discusses the procedure for
estimating a target signal using the subject’s relative spectral reflectance. Finally, Section 5 evaluates
this procedure in the context of an application.

3 Device Calibration

The purpose of device calibration is to undo the effect of changing environmental conditions on the
image formation process. In particular, we would like to accurately reconstruct the relative spectral
reflectance of the subject given color features extracted from an image. Formally, image formation
is composed of three components: the spectral power distribution (SPD) of the incident light E(λ),
the relative spectral reflectance of the surface S(λ), and the spectral response of the imaging device’s
sensor R(λ). There are two types of spectral reflectance. Light that reflects directly off the surface is
known as interface reflectance, usually seen as the spectral highlight off of a glossy surface. Light that
enters the surface and interacts with colorant particles is known as body reflectance [52]. Assuming
the surface is matte or Lambertian, having only body reflection, the response of the imager’s kth
sensor to a (lighting, surface) pair over the spectral range w is defined by Equation 1.

rk =
∫

w
E(λ)S(λ)Rk(λ)dλ (1)

For typical visible light imagers, w = (400nm, 700nm) specifying the visible range, and k = 3
corresponding to the red, green, and blue sensors in the imager. Since common commercial imagers
intend for their output to be consumed by humans, having only three color sensors is reasonable;
human color vision was determined to be a 3-dimensional space by color matching experiments [13].
That is, the use of three orthogonal sensors can represent most1 of the gamut of human color vision.
However, for the class of problems defined in Section 1.1, we are not interested the resulting human-
perceived color; instead, we are interested in S(λ), the relative spectral reflectance of the matte surface
contained in the image.

This formulation is a bit simplistic. In particular it doesn’t capture second-order effects attributed
to the camera’s lens, shutter speed, and aperture. We assume that the lens’ distortion is uniform
across the image and that the shutter speed an aperture are set such that the sensor is not saturated.
An effect we can’t ignore is JPEG image compression [11]. This compression algorithm is both lossy
and has a spacial component, considering multiple adjacent pixels at a time. We consider the effects
of JPEG compression on this model in Section 5.2.

1Any basis defined by human-visible colors cannot represent the entire gamut of human vision using positive coefficients.
This fact can be described geometrically. The projection of the 3-dimensional human color gamut onto a plane of uniform
brightness (chromaticity space) results in a convex polygon [21]. In this plane, the basis functions are represented by points,
and the space of all colors represented by their linear combination using positive coefficients is a triangle. There is no triangle
composed of points within a convex polygon that contain all points within that polygon.
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3.1 Modeling Illumination and Relative Spectral Reflectance

We build a 3-dimensional linear model for the surface reflectance of the subject using principle com-
ponent analysis (PCA) [45]; this results in a set of basis functions B and their weights w. We can
write this in matrix notation (Equation 2) if we discretize the spectral range into n bins; B is a n× 3
matrix, w is a 3× 1 weight vector, and Ŝ(λ) is a n× 1 vector that estimates of the surface’s spectral
reflectance. Since we are considering outdoor ecological applications, we can apply previous work [26]
that has similarly defined a 3-dimensional linear model for daylight (Equation 3) using PCA.

Ŝ(λ) ≈ Bsws (2)

Ê(λ) ≈ Bewe (3)

Initially, we build the lighting and reflectance models independently. In the future, we intend to
build these models iteratively because simply modeling each independently is sub-optimal [37]. In
particular, the reflectance model can be designed to best fit the areas of most change when illumi-
nated by different relevant spectra. Similarly, the measured spectral sensitivity of the imager can
be incorporated to reduce the model’s emphasis on wavelengths for which the imager has minimal
sensitivity.

Once we have models for illumination and relative reflectance, we must mitigate the effect of the
camera’s shutter speed and aperture on Rk(λ). Changing the shutter speed and aperture results in the
image being under- or over-exposed. We assume that this effect is uniform across the sensor and that
the sensor is never completely saturated (avoiding the loss of information). By using 2-dimensional
chromaticity coordinates, instead of the raw 3-dimensional color coordinates, we can compensate for
this uniform change in brightness. The chromaticity space is the projection of the 3-dimensional color
space onto a plane of uniform brightness, and thus mitigates the effects of exposure. The chromaticity
space we choose is the x and y dimensions of the xyY color space as defined by CIE [43].

r ≈ Ê(λ)Ŝ(λ)T R(λ)

r ≈ (Bewe)(Bsws)TR (4)

Our resulting model for image formation (Equation 4), has six unknowns: the we and ws weight
vectors. As described, this system is under constrained since we only have two equations as defined
by the chromaticity coordinates produced from the three sensors available in commercial imagers.
Thus, we must estimate both we and ws using the distribution of chromaticity coordinates present in
the image. We proceed by estimating these values in sequence. First, we estimate we to produce the
illuminant’s spectra. Then, we transform the image to place it under a reference illuminant. From this
“registered” image, we estimate ws resulting in Ŝ(λ), an estimate of the subject’s spectral reflectance.
We assume that the same camera is used to produce all of the analyzed images, and thus the effect of
Rk(λ) on the final pixel value is constant across all images. Thus, we need only compensate for E(λ)
when creating the registered image.

3.2 Estimating Incident Lighting

There are a number of lighting estimation techniques suggested by the literature [3], each making
different assumptions about the lighting and subject present in the image. Since our applications may
have a fixed set of possible illuminants (for example, a subset of daylight illuminants) and typically
have a single subject, we would like leverage that information during lighting estimation. Depending
on the nature of the application we can use either the Color by Correlation [16] algorithm or the
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Gamut Mapping algorithm [17] [14] [2]. The Color by Correlation algorithm assumes knowledge of
both the subject as well as all possible illuminations. As a result, it is only capable of predicting
illuminations that it has “seen” before. In contrast, the Gamut Mapping algorithm only assumes
knowledge of image’s subject. Consequently, it can predict an infinite set of possible illuminants.

By leveraging more application specific information, the Color by Correlation algorithm has been
shown to slightly out-perform [22] the Gamut Mapping algorithm (both easily out-perform other more
simplistic algorithms). Thus, the trade-off between these two algorithms is simply generality versus
accuracy. If the set of possible illuminants can be defined, the Color by Correlation algorithm is
superior. If not, we must turn to the Gamut Mapping algorithm. Since the choice of algorithm is
application dependent, we present a short explanation of each here.

Color by Correlation

The Color by Correlation algorithm computes a correlation matrix representing the probability that
given illuminant was present in a particular image. Each column of the matrix is possible illuminant,
and each row is the probability that a particular chromaticity coordinate would be observed for
surfaces under that particular illumination. Since the chromaticity space has infinite extent, the space
is quantized to make building a correlation matrix feasible.

Producing the log-likelihood is a simple application of Bayes’ rule. For a given illuminant E and a
given set of observed chromaticities Cim, Equation 5 defines the probability that E was the illuminant
for Cim. If we assume that the prior probabilities for E and Cim are uniform, all illuminations and
surfaces are equally likely, then Equation 5 simplifies to Equation 6.

Pr(E|Cim) =
Pr(Cim|E)Pr(E)

Pr(Cim)
(5)

Pr(E|Cim) ∝ Pr(Cim|E) (6)

Further, we note that Pr(Cim|E) is simply the product of the probability of observing each chro-
maticity c (Equation 7). Finally, if we take the logarithm of both sides (Equation 8), we get the same
value as produced by multiplying the correlation matrix to a particular image’s binary chromaticity
vector. The binary chromaticity vector of an image is 1 for every value that is present in the image,
and 0 elsewhere.

Pr(E|Cim) ∝
∏

∀c∈Cim

Pr(c|E) (7)

log(Pr(E|Cim)) ∝
∑

∀c∈Cim

log(Pr(c|E)) (8)

There are two major shortcomings of this algorithm as suggested by [3]; both are related to
the assumption that the set of possible illuminants is fixed. First, the set of observed chromaticity
coordinates may suggest that none of the illuminants are possible. Second, the algorithm cannot
predict a mixture of known illuminants. To solve the first problem, they suggest smoothing the
frequency distribution of the chromaticity coordinates using a Gaussian filter. However, this still
requires us to train the algorithm using an illuminant set that has complete coverage of all possible
illuminants. As we suggested earlier, if such a set cannot meaningfully be produced, then the Gamut
Mapping algorithm is a better choice for lighting estimation.
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Gamut Mapping

The Gamut Mapping algorithm assumes a set of known surfaces defined by the convex hull of their
combined color gamut under a known illuminant. However, it makes no assumption about the set of
possible illuminants to which those surfaces may be subjected. In this context, the gamut is defined to
be the set of all color coordinates that can be produced by the given surfaces, under a given lighting,
with a given camera [17]. More recent approaches [14] measure this gamut in chromaticity space
making it more robust to illumination intensity. This algorithm attempts to derive a transformation
(or change of basis) to map the observed gamut under unknown illumination to the measured gamut
under a known illumination.

Eref =

 d1 0 0
0 d2 0
0 0 d3

Emeasured (9)

These transforms, as represented by their diagonal matrices (Equation 9), define the change in
whitepoint between the reference illumination and the unknown illumination. The whitepoint of an
illuminant is the color coordinate for a pure white Lambertian surface as viewed under that illuminant.
Thus, this transform is equivalent to determining the properties of the unknown light source with
respect to the reference. In general, lighting transformation matrices (as represented by Equation 4)
are not purely diagonal. However, von Kries coefficient law tells us that the diagonal values are most
influential.

Unfortunately, there is no unique transform because we incorrectly assumed that the unknown
illuminant’s gamut was equal to the measured gamut. In fact, the measured gamut is a proper subset
of the unknown gamut we we have only one sample image’s gamut under that illuminant. This causes
there to be several transforms that map the unknown illuminant to the reference illuminant. How to
chose the “best” transform from this set has been contested in the literature. All solutions involve
choosing the “average” solution, which has slightly different meaning depending on the exact problem
formulation [2].

Since the Gamut Mapping algorithm can potentially produce any white point as output, it is
clearly more general than the Color by Correlation algorithm. However, it makes the assumption
that the camera’s sensors are sufficiently narrow bandwidth that Equation 1 can be simplified to
Equation 10. That is, they can be modeled as impulse functions at some wavelength λk, typically the
center wavelength of the camera’s sensor.

rk = E(λk)S(λk) (10)

This assumption is clearly not true of typical cameras. A technique known as sensor sharpening
[4] attempts to map a camera’s wide bandwidth sensors to narrow bandwidth (sharpened) sensors.
Additionally, von Kries coefficient law is also somewhat unrealistic. However, it has been shown [15]
[54] that for “reasonable” illuminants (such as daylight), it appears to hold.

3.3 Changing Illumination

After we’ve estimated the lighting present in a given image, we must transform the images to be un-
der some reference illuminant. We call this operation re-lighting the image. Since we are considering
outdoor phenomena, we choose D65 [41] as the reference illumination; D65 is an approximation of day-
light defined by CIE [43]. Producing a re-lighting transform when using the Gamut Mapping lighting
estimation algorithm is trivial: we simply compute the reference gamut from images illuminated by a
D65 source and use the resulting diagonal lighting transform.
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Building a re-lighting transform from the output of the Color by Correlation algorithm requires
that we produce a lighting transformation matrix. Like Gamut Mapping, we assume that the cam-
era’s sensors are impulse functions at the sensor’s center wavelength. We can define the lighting
transformation Tlight, in terms of Equation 10, as Equation 11.

 E1(λR)S(λR)
E1(λG)S(λG)
E1(λB)S(λB)

 = Tlight

 E2(λR)S(λR)
E2(λG)S(λG)
E2(λB)S(λB)


Tlight =

 E1(λR)/E2(λR) 0 0
0 E1(λG)/E2(λG) 0
0 0 E1(λB)/E2(λB)

 (11)

We choose these center wavelengths to be λR = 620nm, λG = 530nm, and λB = 450nm; these are
close to the center wavelength of the sensors on typical digital cameras [15]. The Color by Correlation
algorithm produces E2(λ) and we have already assumed that E1(λ) is the standard D65 illuminant.
To re-light the image, we need only compute the diagonal lighting matrix and then transform each of
the image’s pixels individually.

This formulation only works if we specified E1(λk) and E2(λk) in absolute terms. However, the
spectral power distribution of an illumination is typically normalized such that E(λ560) = 100 (as
is the case for the D65 specification). This has the effect of multiplying Tlight by β as defined in
Equation 12.

β =
E2(λ560)
E1(λ560)

· 100 (12)

The β term can be factored out of the resulting transformed image if we use chromaticity coordi-
nates instead of absolute color coordinates. This is intuitively true since chromaticity coordinates are
designed to be independent of brightness, the effect for which β compensates. Further, using chro-
maticity coordinates is a reasonable requirement as we have already leveraged chromaticity coordinates
to produce a brightness invariant image for lighting estimation.

3.4 Estimating Relative Spectral Reflectance

We can now estimate the weights ws for the relative spectral reflectance basis functions Bs (see
Equation 2) derived by using PCA. Unlike lighting estimation, however, we have less insight into the
relationship between relative spectral reflectance and the chromaticity coordinates. Accordingly, we
choose to estimate the parameters of our relative spectral reflectance model using non-linear regression.
The input to this non-linear regression will be the 2-dimensional chromaticity coordinates. Similar
to the Color by Correlation algorithm, we quantize the chromaticity space into n × n bins, using
each as feature in our predictive model. These features are stable between images since we previously
corrected for changes in illumination using the re-lighting transform.

Our previous work [24] showed that using this technique produced reasonable results for laboratory
data. The dataset used in that work had consistent illumination since all images were taken under
controlled laboratory lighting. As a result, it did not require the images to be chromatically registered
using a re-lighting transform. Instead of using the x and y dimensions of the xyY color space, that
work used the H and S dimensions of the HSV color space. Like xyY , HSV is a deformation of the
RGB color space that extracts the brightness (the V dimension) from the chromaticity (the H and S
dimensions). Unlike the formulation described here, the target signal was directly modeled from the
quantized chromaticity.
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4 Modeling the Target Signal

Data about the relationship between the relative spectral reflectance, other co-located sensor, and
the signal of interest can then be gathered in a laboratory experiment. Such experiments, typically
suggested by the domain science, must be sufficiently realistic such that derived models have predictive
power in the field. These input data are both high-dimensional and highly structured. Conventional
non-linear regression techniques are not well equip to take advantage of the structure in these data.
We show how to modify one particular algorithm, regression trees, to leverage this structure.

We would like to model the relationship between the relative spectral reflectance and the target
signal using regression trees [8] because of insight we gain from the resulting model’s form. However,
performance of the regression tree algorithm is O(nk2) where n is the number of features and k is the
number of training examples. In particular, the algorithm is searching for the best (feature, threshold)
pair using some error metric E. This requires us to consider each (feature, threshold) pair, of which
there are O(nk), and compute E for each. Computing E requires considering whether each example
resides on the correct side of the threshold, an O(k) operation.

Using the histogram of the relative spectral reflectance with h buckets as input, our runtime
becomes O((n+h)k2). The histogram, which is logically one feature, increases the runtime by O(hk2).
This begins to dominate when we include multiple such histograms for sequential samples in time to
take advantage of the temporal continuity of our target signal. By approximating the input data as a
location-scale distribution, we can reduce this incremental runtime to O(h + k).

A member of a location-scale family can be written as as Equation 13 where mi is the mean, si is
the standard deviation, and X(t) is the unit distribution in that family; the normal distribution is an
example of a location-scale family [25].

t = siX(t) + mi (13)

We can then approximate our relative spectral reflectance by some member of this family us-
ing an Expectation-Maximization (EM) algorithm [18]. Instead of the histograms themselves, the
inputs to the regression tree become cumulative distribution functions (CDF) of the fitted distribu-
tion. We observe that any pair of CDFs will only cross once and thus have only three meaningful
(feature, threshold) pairs, as seen in Figure 3(a); here feature is a synonym for histogram bucket.
More generally, a set of k CDFs will cross at most k2 times producing at most (k + 2)2 meaningful
(feature, threshold) pairs. Thus, our incremental runtime is now independent of h but and has been
increased to O(k3) (recall that we must compute E at each possible result).

4.1 Distributions As Input

Since all of the CDFs are monotonically increasing and continuous, we need not consider all k2

intersections. The selection of a (feature, threshold) pair is equivalent to the selection of a member
from the location-scale that passes through that chosen location, called a threshold CDF, as seen
in Figure 3(b). Thus, we need only consider when other examples cross our threshold CDF. Other
intersections can be ignored because they do not effect E; the order of curves with respect to the
chosen threshold CDF is unchanged. Further, since the error only changes upon an intersection with
the threshold CDF, the error can be incrementally recomputed in constant time because only a single
example needs to be updated. With the use of a threshold CDF and an incrementally computed error,
we can reduce the runtime to O(k + hk). We don’t achieve O(k + h) complexity because we must
consider each other example at each histogram bucket to find possible intersections.

To find the intersection of two distributions in the same location-scale family, we can invert Equa-
tion 13 and set them equal to each other (Equation 14). Then we can easily solve for their intersection
as function of their parameters (Equation 15).
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Figure 3: Two CDFs (plotted in black) from the normal location-scale family. The shaded sections of 3(a) show the three
different threshold values (areas shaded in like colors represent the same logical threshold). The red curve in 3(b) represents
a threshold CDF for the yellow threshold.

t−m1

s1
=

t−m2

s2
(14)

t =
m1 −m2

s2 − s1
(15)

4.2 Efficiently Finding the Intersection

If we impose some relationship between the mi and si, we can find the “next” intersection in constant
time. Alternatively, we can model the samples using a weighted mixture of two location-scale distri-
butions from the same family; this mixture itself represents a new location-scale family. In this case,
we can rewrite Equation 13 as Equation 16. Inverting that equation and setting it equal to another
mixture with a different weight (fixing the mean and standard deviation) and yields Equation 17.
Finally, we can solve for the intersection (Equation 18).

t = α(siX(t) + mi) + (1− α)(siX(t) + mi) (16)
t− α1m1 − (1− α1)m2

α1s1 + (1− α1)s1
=

t− α2m1 − (1− α2)m2

α2s1 + (1− α2)s1
(17)

t =
s1m2 − s2m1

s2 − s1
(18)

We see that the intersection doesn’t depend on α. This means that either all curves intersect at
the same point, or don’t intersect at all (while simplifying from Equation 17 to Equation 18, we may
have divided by zero, making the intersection undefined). As a result, there are at exactly (k + 2)
meaningful thresholds for k samples. Thus, the runtime of adding a histogram feature with h buckets
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has an incremental worst case runtime of O(h + k). In future work, we intend to generalize this
technique to work with more complex model formulations and other non-linear regression algorithms.

4.3 Model Validation

For the ecological systems we consider, there is no meaningful way to capture ground truth in the field.
As a result, we must validate the predictions of our model through other means. This requirement
can be partitioned into two types of validation. First, we would like to ensure that the magnitude of
individual predicted measurements are accurate. Second, we want to ensure that the process we are
modeling progresses at a reasonable rate through time. Any validation procedure is likely to be highly
application specific. However, there are certain best-practices that can be applied in general.

Previous ecological work [40] that studied CO2 uptake in other plants encountered a similar prob-
lem. Their solution was to relate their predictions to an expectation of plant growth. In laboratory
experiments, they correlated their model’s estimates with an increase or decrease in leaf count. This
approach takes advantage of domain specific information to validate the model: a net CO2 gain should
result in more leaves and a net CO2 loss should result in fewer leaves. Validating the model simply
required measuring leaf count in the field and comparing to the model’s prediction. An extension of
this approach could ensure internal consistency of the model by measuring net CO2 gain during a
period where no leaves were lost or created. During these periods, we expect there to be a net zero
gain in CO2.

In general, this metric suggests that easily observable characteristics of the system (either visual
cues or other deployed sensors) can be used to validate prediction accuracy. This seems tautological:
if such metrics existed, we would use them to help model the system. However, we are interested in
the absolute instantaneous value of the signal, and this type of metric essentially measures the integral
of that signal’s value over time.

This form of validation metric attempts to remove absolute error from our predictions but contains
no time component. As suggested earlier, the processes we’d like to model have memory and produce
continuous signals over time. Factoring in the time component again requires application specific
cues. For example, for measuring photosynthesis in moss, we know that such activity only happens
while the moss is hydrated. The moss become hydrated briefly at dawn (from morning dew) and
after a rain. Further, the duration of hydration mostly depends on the ambient air temperature and
relative humidity. Thus, we can use the time of day or quantity of rain in addition to temperature
and humidity to estimate the duration of active photosynthesis. Again, this estimates an orthogonal
signal but allows us to evaluate the accuracy of our model.

A final approach is to build more realistic (less controlled) laboratory experiments. This requires
that we be able to measure the signal of interest in simulated field conditions, which may not always
be possible. Following the moss example, we could perform the photosynthesis measurement outside
under natural light with uncontrolled (but representative) temperature and humidity. This type of
experiment would provide us with measurements of the target signal that can be directly compared
to the predicted values.

4.4 System Overview and Requirements

The process we have described is shown in Figure 4. It makes a few specific assumptions about
the subject, the camera, and the application itself. We assume that the subject of the image can be
modeled as a Lambertian surface, it is matte with no spectral highlights. Though not a very restrictive
assumption, we assume that the illumination and reflection can be accurately modeled; this is the case
for daylight and most natural surfaces. The specifics of the lighting-related assumptions made by the
illumination estimation algorithms we employ were discussed earlier. We assume all images were taken
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Figure 4: A graphical representation of Equation 4 with the addition of signal estimation. The models (boxes on the top
row) are trained using the data depicted below each. These data are experimentally acquired. This particular instantiation
of the process predicts CO2 uptake.

with the same camera and that the shutter speed and aperture were adjusted to avoid saturating the
sensor (as it typically the case for most modern cameras). We ignore second-order camera effects, like
lens distortion, assuming that they are uniform across the image and have little influence. Finally, we
expect there to be other in-situ ecological sensors available that can be used both for modeling and
model validation.

Our process is derived directly from the physical model of image formation, and is broken into
stages. First, we estimate the lighting present in the scene using either the Color by Correlation or
Gamut Mapping algorithm. Given the lighting, we can perform a change of basis to place the scene
under a reference illuminant. Next, we predict the relative spectral reflectance of the surface in the
transformed image. Finally, using co-located sensors and the predicted relative spectral reflectance,
we estimate the target signal using a non-linear regression algorithm specifically modified for use with
distributions as inputs.

The current formulation suggests that the parameters of the lighting, reflectance, and target signal
models be computed in sequence. An alternate approach would be to estimate the parameters of all
three models at once. Such an approach could conceivably do equally well, but discards seemingly
important information. Namely, it doesn’t explicitly attempt to account for the predicted lighting,
possibly causing more error in reflectance estimation. Yet, such an approach is an interesting general-
ization since it is able to apply domain knowledge, in the form of the individual models, without any
additional supervision. We intend to evaluate this alternate approach in future work.

5 Application-driven evaluation: a case study

As suggested earlier, estimating the photosynthesis of Tortula princeps, a drought tolerant moss, is
an example where imagers can become very useful sensors. Previous work [40] has produced monthly
estimates of photosynthesis for plants in the field. Using field-based imagers, we can easily produce
hourly photosynthesis estimates. High temporal resolution is of particular interest for this application
since this moss can begin photosynthesizing mere minutes after becoming hydrated after a long dry
spell (Figure 5).

Previous work suggests that relative spectral reflectance of a plant is related to that plant’s pho-
tosynthesis and overall CO2 uptake [50]. This intuitively makes sense since greener plants are rich in
chlorophyll, a reactive photo-pigment involved in carbon uptake [19]. Thus, we expect that the light
reflected from an actively photosynthesizing plant would be related to the relative spectral reflectance
of the chlorophyll molecule. In the following sections we endeavor to calibrate an imager to measure
the relative spectral reflectance of this moss. In future work, we will use our modified regression tree
algorithm, discussed in Section 4, to model CO2 uptake given an estimate of the moss’ relative spectral
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(a) Hydrating the moss (at 16:45) (b) Moss actively photosynthesizing (at 16:50)

Figure 5: Moss at James Reserve during July 2008 after a long dry period. 5(a) shows us hydrating the moss and it
beginning to photosynthesize in the moist areas. After only 5 minutes, much of the moss is green and photosynthesizing as
seen in 5(b).

reflectance.
The goal of this ecological study is to determine the effect of short summer rain events on the

moss’ ability to survive. Ecologists hypothesize that short summer rain events are detrimental to
the moss because it causes the moss to expend more carbon than is is able to uptake. Thus, it has
been suggested that this moss is capable of surviving long hot summers as long as there is minimal
rain during those periods. Using the estimates provided by our imager-based sensor, we can test this
hypothesis.

5.1 Experimental Setup

This experiment attempts to performs two related functions. First, we aim to model the relative
spectral reflectance of the moss as it drys over the course of a day. Second, we aim to show we can
use a camera to accurately estimate the relative spectral reflectance of a fixed subject under realistic
(and changing) natural illumination. We acquired a number of moss samples from the James Reserve,
seen in Figure 5. We hydrated the moss and allowed it to dry for approximately 6 hours, from 12pm
until 6pm. We collected samples of the illumination, moss’ relative spectral reflectance, and images
containing the moss and MacBeth Color Checker with an interval of 15 minutes. In total, 23 samples
were collected. As mentioned earlier, there is a temporal component to the model validation. By
allowing the moss to dry over a period, we attempt to include those temporal variation in our training
data.

In order to measure both the incident illumination as well as the plant’s relative spectral reflectance,
we used a spectroradiometer (Licor 1800 [6]). To measure the absolute spectral power distribution
of the incident illumination, we calibrated the response of the spectroradiometer using a reference
tungsten illuminant, similar to the CIE A reference [43]. Similarly, the spectral reflectance of the
plant was measured with respect to same tungsten illuminant. Samples of both the plant and the
incident illumination were taken at 2nm increments from 390nm to 750nm.

Images of moss were taken using two standard consumer-grade cameras with their auto white-
balance settings turned off. We used a Canon EOS 450D [10] to capture 10MP images in both RAW
format and JPEG format; this camera represents a relatively high-end imager. Additionally, we used
a Pentax Optio S5z [44] to capture 5MP images in JPEG format; this camera represents a lower-end
imager. Each image contained both the moss sample as well the MacBeth Color Checker reference;
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Figure 6: The spectral power distribution (SPD) of the illumination measured during the course of the experiment as well
as the CIE standard D65 illuminant is shown in 6(a). The accuracy of the daylight model built by Judd et. al. [26] for
our measured illuminants is plotted against time in 6(b), the red line is the mean and the grey lines are the first standard
deviation. Below, we show the fit for the sample with the largest RMS error (the 21st sample at 315 minutes).

this chart contains 24 color swatches of known spectral reflectance.

5.2 Evaluation

We verified that the illumination we measured using the spectroradiometer was reasonable by com-
paring it to the CIE standard D65 illuminant as seen in Figure 6(a). Each of these spectra have been
normalized such that E(λ560) = 100. The CIE standard D65 illuminant is an approximation of day-
light as measured around the northern hemisphere. We see that our measured spectra have the same
characteristic shape as D65 although they are slightly bluer late in the day; they contain more power
in the 400nm–500nm range than D65. This similarity suggests that our measurements are producing
reasonable spectra.

Using the daylight model derived by Judd et. al. [26], we computed the weights (we) of the basis
functions (Be), as defined in Equation 3, for our measured illuminants. As shown in Figure 6(b),
the RMS error of this model does follow some time dependent trend through the course of the day.
Initially, this might suggest that the model is missing some relevant information. However, we see
that the fit for the example with the largest absolute RMS error still is quite good. This further
confirms that our measurements are accurate. As we see in Figure 6(a) the lighting measurements are
all quite similar in form. As a result, we choose to use the Color by Correlation algorithm described
in Section 3.2. This algorithm requires that we convert the RGB color coordinates of our images into
discretized chromaticity coordinates. We choose to use x and y dimensions of the xyY color space, as
defined by CIE; the chromaticity gamut defined by this chromaticity space is shown in Figure 7(a).

To demonstrate the color shift caused by lighting, we plot the discretized chromaticity coordinates
of the MacBeth Color Chart from the first and final samples of the experiment in Figure 7(b). Here
we have chosen to partition the xy plane into a grid of 32 × 32 discrete chromaticity coordinates, as
suggested by [16]. Each dot represents a discrete coordinate that contains at least one pixel. Since
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(a) CIE Chromaticity Diagram
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(b) Chromaticity shift of the MacBeth Color Chart

Figure 7: The standard chromaticity diagram shown in 7(a) [53], as defined by CIE [43]. 7(b) shows the chromaticity shift
of the MacBeth Color Checker over the course of 6 hours illuminated by daylight. Both figures are shown in the xyY color
space.

the image’s subject is fixed, the shift in color can only be attributed to change in illumination. This
is the effect we are attempting to remove.

The 2-dimensional chromaticity distributions of the sampled images are stored in matrices that we
convert into row-major ordered vectors. Each vector is normalized by the number of pixels in the image
and associated with the illumination measured using the spectroradiometer; these become the columns
in the correlation matrix. This is a slightly simpler formulation of the Color by Correlation algorithm
because we need not burden the model with the chromaticity distributions of other subjects under the
same lighting; we have only one subject. To produce the log-likelihood that example image has been
illuminated by particular illumination (Equation 8), we simply multiply the correlation matrix by the
binary chromaticity vector. Recall, this binary vector is 1 for all chromaticity coordinates found in
the example image and 0 elsewhere.

The training set for the Color by Correlation algorithm is selected at random from the set of
experimentally obtained samples. We hand segmented the images from both cameras into an images
containing only the moss and images only containing the MacBeth Color Checker. Figure 8(a) shows
average RMS residual error between the predicted illumination and the measured illumination as a
function of the training set size. Interestingly, for large training set sizes (n >= 16), the moss images
had a slightly lower error than the images containing the MacBeth Color Chart. This is odd because
the moss’ reflectance is changing over time, where as the chart’s reflectance is constant. In these
cases approximately 70% of samples were used for training, so we believe this is simply an effect of
over-training the model.

Though not shown, the model trained using both raw and JPEG images taken from the Canon
camera produced similar residual error. This interesting result shows that JPEG compression has a
minimal effect on the accuracy of the Color by Correlation algorithm when applied to these data. We
can understand why by considering how JPEG compression works. First, it converts the image into
the Y CbCr color space, which has two chromaticity dimensions and one brightness dimension similar
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Figure 8: Error of the Color by Correlation model derived from images of moss and the MacBeth Color Checker taken with
the Pentax Optio S5z camera under varying illumination. 8(a) shows the reduction in error as the size of the training set
increases. 8(b) shows the histogram of testing error on moss examples for a training set size of 12 images.

to the xyY color space we used to train our model. Next, it computes the discrete 2-dimensional cosine
transform of each 8×8 pixel block in the image. This produces the spatial frequency of colors within a
given image block. Leveraging the fact that humans are more sensitive to lower frequency variations in
color and brightness, JPEG compression discards some information about the high frequency signals,
retaining most information about the lower frequency signals [11]. For both the moss and the MacBeth
Color Chart, the spacial frequency in all three color dimensions is relatively low. This suggests that
JPEG compression would have minimal effect on the chromaticity-based signals we are using to build
our model.

Once we obtain an accurate estimate of the image’s lighting we can correct for that illuminant
using Tlight (see Equation 11). We test this transform on our segmented images containing the Mac-
Beth Color Chart because its spectral reflectance doesn’t change (unlike the moss). To visualize the
results of this transform, we choose to compute the 2-dimensional Jenson-Shannon Divergence (a sym-
metrical version of the Kullback-Leibler divergence [30]) of the discretized chromaticity coordinates.
We compute this divergence for all pairs of examples and expect the divergences to small since the
subjects are identical.

Histograms of these divergences are shown in Figure 9(a). As we can see, the lighting transforma-
tion compresses the distributions of divergences towards zero as expected. An unfortunate consequence
is that it has also increased the variance among the previously well clustered examples. We hypothesize
that this is caused by inherent error in estimating our sensors as impulse functions, a poor choice of
center wavelengths, or color alterations resulting from JPEG image compression. Recall, we previously
assumed that the camera’s sensors were impulse functions (responding to a single center wavelength)
such that we could compute a diagonal lighting transformation. In future work, we intend to try
develop another algorithm, perhaps based on sensor sharpening, to further compress this divergence.
Any improvement at this stage in our processing will improve the accuracy of our predictions.

After the images have been transformed we must predict the parameters of the relative spectral
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Figure 9: 9(a) The Jenson-Shannon Divergence, before and after re-lighting, of all pairs of images containing the MacBeth
Color Chard under varying daylight illumination. Optimally, all divergences would be zero after the lighting transformation.
9(b) The basis functions, as determined by functional PCA for the relative spectral reflectance of the moss as it dries over
time.

reflectance model (shown in Figure 9(b)). We have chosen to use only the first three basis functions
for our model because they account for 99.96% of the variance contained in the moss’ measured rel-
ative spectral reflectance. The first basis function, plotted in black, represents the average spectral
reflectance across all samples. The second and third basis functions, plotted in red and green respec-
tively, show the type of variation seen. In particular, we see that there is significant variation in the
blue (400nm – 450nm) and red (675nm – 750nm) parts of the spectrum. We expect some variation near
400nm because it is near the minimum wavelength our spectroradiometer can measure. It is not clear
what caused the variation around 700nm. We suspect it was due to drift in the spectroradiometer’s
sensors during the course of the experiment.

Given this model, we must predict weights of these basis functions (ws from Equation 4). We do
this by training three regression-tree based models, one for each parameter, using the 2-dimensional
chromaticity coordinates from the images previously registered by re-lighting. We trained this estima-
tion model 12 samples, the same value which produced reasonable results for the lighting estimation.
The RMS residual error of this prediction is shown in Figure 10(a). We can see that there is no mean-
ingful spatial or temporal pattern in the error, suggesting the model captures most of the variation
in the data. However, the magnitude of the error is rather large and we see some rather significant
outliers. In comparison, the best possible values for ws produce a mean RMS residual error of 0.0214,
approximately 20 times smaller than the error produced by the spectral reflectance estimation model.

To better understand this error we plot the measured and estimated spectral reflectance for the
largest outlier, sample 4 occurring at 60 minutes. As we can see in Figure 10(b), the fit is quite good.
The vast majority of the error comes from wavelengths greater than 700nm. This error is somewhat
expected since it is present in the model’s basis functions as well as the original measurements.
However, without evaluating the effect on the estimation of the target signal (CO2 uptake), it is
impossible to tell if this prediction accuracy is sufficient for our application. Regardless, there is
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Figure 10: The RMS residual error of the spectral reflectance predicted by our procedure is shown in 10(a); the red line is
the average error and the grey lines are the first standard deviation. In 10(b) we show the predicted spectral reflectance of
the observation with the largest error (observation 4 at time 60 minutes).

certainly significant room for improvement. As suggested earlier, the error of this prediction can be
reduced by improving the accuracy of the re-lighting transform.

5.3 Incorporating Prior Work

Prior ecological analysis [20] of this moss has produced very detailed measurements of CO2 uptake
in the laboratory. The moss was placed in a chamber under controlled temperature and lighting
conditions. Ambient air was drawn through a series of tubes such that some passed through the
chamber as a sample, and the rest was unaltered as a control. Using an infrared gas analyzer [7], the
air that had passed through the chamber was compared to the control to compute the relative increase
or decrease of CO2 in the air by volume. The instantaneous CO2 uptake of the moss ranged between
-1 µmol m−2 s−1 and 6 µmol m−2 s−1 with an error of ± 0.5 µmol m−2 s−1. Through the experiment,
a florescent light was turned on and off at 12 hour intervals to simulate day and night. During the
light periods, the moss was kept at 15 ◦C; during the dark periods, the moss was kept at 10 ◦C. In
addition to the CO2 and temperature measurements, PAR measurements and images of each sample
were collected at 10 minute intervals. The experiment captured the moss’ progression from hydrated
to dry (known as a dry down) over the course of a eight days.

In addition to a series of moss dry downs, other measurements were taken to produce an envi-
ronmental productivity index (EPI) [40] for this moss plant. This index posits that there are three
factors that limit a plant from gaining carbon at its maximal rate: availability of light, availability of
moisture, and suitable temperature. Further, it suggests that independently measuring the effect of
each dimension on the plant’s respiration is sufficient to reconstruct the plant’s behavior in the field.
For example, temperature was varied from -1 ◦C to 34 ◦C while the moss was kept moist and well lit.
Then, by simply multiplying the limiting factors together we can predict the approximate percentage
reduction in CO2 uptake as compared to the moss’ maximum absorption.
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The problem with using this model in the field is the lack of information about the moss’ moisture
levels; temperature and PAR are easily measured. As a surrogate, we intend to use the moss’ relative
spectral reflectance, which has been shown to be correlated with moisture as well as CO2 uptake [19].
Thus, to leverage the data previously collected, we must compute the relative spectral reflectance of
the moss in the images during the dry down. Fortunately, we know the character of the incident light
in the images as it was produced by a florescent bulb. By re-lighting the images to be under the
D65 illuminant, we can use the reflectance model produced earlier to estimate the relative spectral
reflectance of the sample. Finally, we can model CO2 as a function of temperature, PAR, and relative
spectral reflectance using our modified non-linear regression algorithm.

In the future, another experiment must be run to validate this model. In particular, the constant
“day” and “night” temperature during the previous experiment is particularly unrealistic. The next
experiment will attempt to measure CO2 under more realistic (less controlled) conditions as suggested
by Section 4.3. Such an experiment would be performed in the presence of representative natural light
and ambient temperature. Because of the difficulty involved in running such an experiment, it will be
of limited duration and provide less modeling utility as compared previous experiments. However, it
will serve to produce a dataset we can use to evaluate the prediction accuracy of our models.

6 Other Applications

There are a number of applications that could benefit from using imagers as sensors. On example is
estimating CO2 uptake for an entire meadow already instrumented with NEON (National Ecological
Observatory Network) [39] flux towers. These devices have a number of meteorological sensors in
addition to a camera. Though the meadows typically contain more than one type of plant, it seems
that simple color based image segmentation could partition the image accurately. Then, we could
apply our existing methodology to the sub-images to measure the CO2 uptake of each plant in the
scene.

Like meadows, the soil beneath the forest canopy is hypothesized to emit and absorb a significant
quantity of CO2. As a result, ecologists have developed accurate models of soil CO2 uptake based
on soil surface temperature. However, we cannot measure soil surface temperature with the density
required to produce an accurate prediction of CO2 uptake of the soil. It is known that soil surface
temperature lags air temperature (which we can easily measure) but is also significantly effected by
direct sunlight. Using tower mounted cameras, we can image the soil below the forest canopy looking
for sun flecks that have a distinctive color signature (they are saturated). Combining the localized
sun flecks and ambient air temperature, we can predict a 2-dimensional map of surface temperature
to feed into the CO2 models.

Similar to the river depth measurement system [31], in-situ imagers can be used to measure par-
ticulate matter suspended in a river. When present in reasonable quantities, these particulates have
an effect on the river’s visible color. Measuring these particulates, many of which are contaminants,
can help ecologists understand the health of the local ecosystem. Enabling ecologists to simply pho-
tograph the river, instead of performing direct measurement, will help increase the sampling coverage
and suggest areas that will most benefit from more accurate measurement. This will help save effort,
money, and time.

7 Work Plan and Timeline

• Reformulate and further test re-lighting: Collect more images and spectral power distri-
bution curves under various natural light. Modify the re-lighting algorithm to be more robust
to these changing conditions. – 2 Months
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• Further generalize regression modifications: Enable the use of arbitrarily complex mix-
tures of location-scale distributions from the same family. – 2 Months

• Complete evaluation of moss photosynthesis application: Apply the procedure described
here to one year of data collected by at James Reserve, producing a CO2 signal. Evaluate the
model’s accuracy for this application using the model validation techniques we have described –
3 Months

• Build online system for predicting moss photosynthesis: Provide measurements of the
moss’ CO2 update given real time images captured at James Reserve – 1 Month

• Apply procedure to another application Instantiate and evaluate our procedure targeting
one of the applications mentioned in Section 6 – 6 Months

• Dissertation Writing: 2 – 3 Months
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