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Abstract of the Dissertation

Imagers as Sensors:

Using Visible Light Images to

Measure Natural Phenomena

by

Joshua Mark Hyman

Doctor of Philosophy in Computer Science

University of California, Los Angeles, 2010

Professor Deborah Estrin, Chair

There exist many natural phenomena where direct measurement is either impos-

sible or extremely invasive. The signals that biologists wish to measure about

these phenomena have a variety of characteristic forms. We consider three spe-

cific forms: continuous signals (like CO2 flux), discrete signals (like pollinator

presence on a flower), or discrete spatio-temporal signals (like pollinators visiting

a field of flowers). We propose using imagers as sensors by constructing a set of

template procedures that uses images to obtain estimates of such phenomena.

These procedures, composed of state-of-the-art computer vision, image pro-

cessing, and statistical learning and sampling algorithms, are evaluated in the

context of specific applications and shown to be general through their limited as-

sumptions. We describe various methodologies that can be used to isolate changes

in the subject from changes in the local environment, making existing algorithms

robust to field conditions present in real applications. Finally, we rigorously de-

fine the proposed procedures and evaluate their accuracy on real data gathered in

xx



the field, augmented by simulation when required. Our goal is to influence future

sensing system design through the identification of mechanisms that regularize

the input to these procedures, making subsequent processing simpler.

For each form of signal we consider, we apply our approach to a specific

application. Our procedure for predicting continuous signals is applied to the

prediction of CO2 flux from a moss plant, measurements that would otherwise

require encasing the plant in an air-tight box. We consider pollinator occupancy

of a flower, data that would otherwise be collected manually by humans in the

field, as a representative instance of discrete signals. Scaling pollinator occupancy

measurement to an entire field of flowers is the application we consider when

evaluating our procedure for collecting discrete spatial temporal signals.

xxi



CHAPTER 1

Introduction

There are many important natural phenomena that traditional sensors cannot

measure directly. For example, accurately measuring a plant’s rate of photosyn-

thesis (release or absorption of CO2) requires encasing part or all of the plant

in an air tight chamber. Then, the air entering and leaving the chamber are

compared to measure instantaneous CO2 flux. Such measurement is error-prone

and must be frequently calibrated, making long term deployment difficult. Ad-

ditionally, such an apparatus is clearly too bulky and invasive to be used in a

field environment. Another similar example is counting pollinator visitations to

a field of flowers. Though this could be sensed by the change in capacitance of a

flower’s pedals when a bee is present, such dense sampling is clearly impossible

at any reasonable scale.

Visible-light imagers represent a very powerful and untapped sensing modal-

ity. Imagers are the missing input required to accurately model natural phe-

nomena when direct measurement is difficult. Images are typically avoided in

traditional sensing applications because they produce large quantities of uncal-

ibrated data. The form of calibration required for an imager-based ecological

sensor is unlike that of typical sensors; there is no conveniently accessible refer-

ence that can be used to calibrate an imager used as a CO2 sensor, for example.

We aim to use state-of-the-art computer vision, image processing, and statistical

learning algorithms to build template imager calibration procedures intended for

1



estimating both continuous and discrete phenomena (Figure 1.1). First, image

features must be extracted that are both domain relevant and immune to chang-

ing field conditions. Second, these features are used to model the signal of interest

as measured in a controlled laboratory environment or a simulation based on hu-

man labeled data from the field. We will produce specific instantiations of these

template procedures, evaluating them in the context of a particular biological

applications.

Extracted Features

Ground Truth
Model

Target Signal
Online Processing

Computed Offline

Figure 1.1: This diagram shows the two parts of imager calibration. First, field condition
invariant image features are extracted from images. Second, laboratory data is
acquired as ground truth for off-line the signal modeling. Together, both elements
are used to calibrate the imager.

Within this framework, we endeavor to estimate three different types of sig-

nals, each requiring a different approach. Continuous signals, like plant photo-

synthetic respiration, require that we model the signal of interest as it changes

through time from features directly or indirectly extracted from the images them-

selves. Discrete signals, like pollinator occupancy, require that we apply a more

traditional computer vision approach to detect the presence of target objects

within the scene. Finally, discrete spatio-temporal signals, like pollinator activity

over an entire patch of flowers, require that we employ a sampling based approach

to gather summary statistics, like event density, since direct measurement of the
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entire phenomena would require too many cameras.

1.1 Properties of an Imager

An imager is any device that can capture and record the spatial distribution

of light reflected from a scene. These devices typically have a number of CCD

(charge coupled device) or CMOS (complementary metal-oxide semiconductor)

sensors, each with a filter that allows them to be most sensitive to a particular

range of wavelengths [28]. The image captured by the imager is composed from

the incident illumination as it reflects off of the objects in the scene and modulated

by the sensitivity of these sensors in the camera. For this work, we ignore second-

order camera effects, like lens distortion, assuming that they are uniform across

the image and have little influence.

We consider three classes of imagers for use as sensors: stationary still cam-

eras, stationary video cameras, and pan-tilt-zoom video cameras. We define a

video camera to be a camera capable of capturing frames with a rate of at least

1Hz. We plan to use the still camera to obtain repeat images of the same scene,

but the period between exposures will be far larger, upwards of 10 minutes. The

choice of camera is tightly coupled to the type of signal the phenomena of interest

suggests; the finer the required measurement granularity, the higher the frame

rate we must capture the imagery. The finer the required spatial resolution, the

higher the density of sensors required in the camera. Further, if we desire to

capture the signal over a larger region than the field of view for the camera, we

must employ a camera that can be actuated to cover the area of interest.
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1.2 Imager-Based Sensing Applications

There is a large class of sensing applications that can make use of imagers cali-

brated to estimate continuous, discrete, or discrete spatio-temporal signals. We

define the subset of applications we consider using a series of suggestive questions.

Though this list is not exhaustive, it describes the application characteristics

leveraged by our process.

Is an imager the most natural sensor for the phenomena?

For many applications, such as detecting birds flying past an imager [54] or

counting the number of eggs in a nest [53], an imager is the most natural

sensor of the phenomena. Alternatively, the target signal could be logi-

cally encoded in image features that are not easily discerned by a human.

Thus, using a traditional vision approach, like object detection or image

segmentation, is a non-starter. This criteria defines whether the solution

will employ mostly computer vision techniques, estimating a discrete sig-

nal, or statistical and signal processing techniques, estimating a continuous

signal.

In this work, we consider applications of both forms; specifically, applica-

tions for which an imager is not the most natural sensor and applications

for which an imager is the only reasonable sensor due to the density or

duration of sensing required. When approaching applications where an im-

ager is not the most natural approach, we consider the space of solutions

that require what we call applied vision. This entails applying the physics-

based modeling of image formation, as developed by the vision community,

to help calibrate the imager and finally model natural phenomena. For

applications that fundamentally require an imager because of their density
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or extent, we apply traditional vision algorithms simplified by assumptions

reasonable for the target application.

Is ground truth data available for field imagery?

The modeling of these systems can be greatly simplified if the ground truth

data is acquired through field measurement. Though this is sometimes

possible, we consider the more general case where such field measurement is

not possible or requires significant human effort to label the gathered data.

If ground truth data were easy to acquire, there would likely be no need for

the use of an imager. Thus, having minimal or no ground truth data for

field imagery is simply an intrinsic characteristic of these applications.

In these cases, laboratory experiments or short field collection combined

with simulation must function as surrogates for extended data collection in

the field. As such, they must be shown to sufficiently capture the space

of important inputs to the ecologically process. The resulting model must

be evaluated using properties of the ecological system, to place a bound on

prediction error. For example, previous work [76] attempting to measure the

rate of plant photosynthesis used the fact that plant growth (as measured

by leaf area) is related to the integral of carbon uptake over time (the result

of photosynthesis).

Which spectrum of light is measured by the imager?

Though all frequencies of light from infrared to ultra-violet are of some

ecological interest, the visible range has been found to be particularly useful

for measuring many phenomena [34] [50] [36] [73] [22]. In this work we

confine our measurement to the visible range. This has the additional

benefit of allowing for the use of commercially available digital imagers.
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Current digital imagers use CCD or CMOS sensors that are most sensitive

to light in the visible range, 400nm – 700nm, since their dynamic range is

bandwidth limited by various filters [98]. Intrinsically, these sensors have

a dynamic range that extends beyond the visible range into near-infrared

as well as ultra-violet and could, in principle, be used as a sensor for those

spectra as well.

Event detection or process estimation?

Interest in ecological phenomena broadly falls into two categories: event

detection and process estimation. In this work, we focus on process estima-

tion, which allows us to take advantage of a variety of application-dependent

simplifying assumptions. For example, these processes typically have mem-

ory, which implies that the target signal is continuous. This suggests that

the time dimension of the model’s input can be used to reduce the prediction

error.

In Chapter 2, we focus on the measurement of a plant’s CO2 flux, a con-

tinuous signal that is a function of the imager’s output. In Chapters 3 and

4, we consider the estimation of discrete signals, such as the presence of a

pollinator on a flower. It is important to note that we are still modeling a

process through a sequences of discrete events. We are not attempting to

detect novel anomalies, such as suspicious bag in a crowded airport termi-

nal. Instead, we use the temporal continuity of sequential images from a

video sequence, to identify the continuous motion of a particular foreground

subject.

Which image features are extracted?

There are many features that could be extracted from images. Some fea-
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tures, like texture, are somewhat independent of lighting by nature. Other

features, like color, intensity, or radiance are significantly affected by the

incident illumination. We consider a variety of potential image features,

each relevant to a particular form of estimate. For continuous signal esti-

mation, we consider both chromaticity and the relative spectral reflectance

of the subject over the visible range. These features have been widely used

in biological applications for everything from soil versus vegetation clas-

sification [69] to detecting the presence of clouds [94]. For discrete signal

estimation, we again consider color based features, but this time in the form

of foreground and background models.

Modeling a single- or multi-valued signals?

Ecological processes can be defined by a set of measurable responses to their

environmental input, some of which may be dependent on one another. We

focus on applications that are interested in single-valued signals that are

partially dependent on various easily-measurable environmental inputs. In

Chapter 4, we extend our analysis to consider applications that require

summary statistics of a discrete signal to be predicted over a 2-dimensional

area. Though we consider an area of larger extent, we are still functionally

computing a single valued signal.

Vantage point: in-situ or remote imaging?

Remote imaging, from satellites or planes, has produced excellent insight

into large scale ecosystem processes [104]. However, even with high resolu-

tion imagers, single image pixels may represent tens or hundreds of meters.

As a result, their predictions are necessarily general as acquiring ground

truth to calibrate more specific these measurements is difficult. We choose

to focus on local measurements acquired from in-situ imagers because they
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have the potential to be more accurately calibrated using laboratory exper-

iments. The template procedures we define for imager calibration targeted

at in-situ imagers is similar in spirit to processing techniques used to derive

meaning from remote imagery, but necessarily differs in practice. An ecosys-

tem leveraging the strengths of both remote and in-situ imagers would be

quite fruitful as data acquired from in-situ imager deployments can then

be used by the remote sensing community as ground truth to further refine

their predictions. Inversely, phenomena sensed by remote imagers could

direct the deployment of more dense measurement by in-situ imagers.

Are domain-relevant sensors co-located with the imager?

Ecological processes are affected by a variety of different inputs, some more

easily measured than others. For example, the rate of plant photosynthesis

is known to be affected by the availability of temperature, light, and mois-

ture [76]. We can easily measure temperature and light using traditional

sensors that can be deployed in the form of micro-meteorological stations.

Further, by measuring these signals both in the field and during labora-

tory experiments, we can more easily reason about the model’s accuracy.

For these reasons, we choose to focus on applications that have meaningful

co-located sensors in field deployments when attempting to produce contin-

uous signals. Such co-located sensors carry slightly less importance when

attempting to estimate discrete signals.

What is the expected sample frequency?

Depending on the application, ecologists can sparsely sample environments

of interest (at a monthly or weekly frequency) for long durations [76], or

densely sample for a short durations [5]. As a result, models based on these

data collection efforts cannot make temporally dense predictions over long
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period of time. We attempt to collect data at least multiple times an hour,

and sometimes multiple times a second. This allows us to produce accurate

predictions based on these data having a maximum resolution of hours or

even as low as minutes depending on the application. Domain scientists

can use this data to study an entirely new set of phenomena that occur

on time scales that could not be captured previously. For example, we can

measure the effect of a summer rain event on moss photosynthesis, or the

pollination activity occurring to a patch of flowers. These events are known

to be important, but have traditionally been incredibly time-consuming to

measure.

1.3 Application Driven Innovation

Building image-based ecological sensors is a driving force for innovation in both

sensor networking and computer vision. Traditionally, sensor networking has

always endeavored to solve real application problems and innovate by adapting

best-of-breed algorithms to the specific task at hand. Similarly, our approach

to building an image-based sensor leverages the best available vision algorithms

and innovates in areas where those techniques perform poorly. We develop each

template procedure in the context of a particular application and discuss the

minimal set of requirements of future applications that wish to instantiate our

approach. We anticipate further innovation through the reuse of this process for

different ecological applications.

For each of the template procedures we propose, we consider a single motivat-

ing application while carefully defining our assumptions to maintain generalizabil-

ity within the class of applications we target. The study of the drought-tolerant

moss Tortula princeps requires the estimation of its CO2 uptake over time, a
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continuous signal. This moss has the biologically interesting ability to hiber-

nate when conditions are not favorable for its growth. Ecologists are curious as

to why it is not more prevalent in dry climates for which it seems well suited.

This particular problem lends itself nicely to the use of imagers because it has

been shown [102] [34] that a plant’s photosynthetic respiration is related to its

spectral reflectance. Further, this and other moss can be reliably modeled in

the laboratory and are quite representative of other higher-order plant species

[79]. Previous work [76] showed that the photosynthetic respiration of plants

would remain at its maximum if it weren’t limited by the ambient temperature,

the availability light, or moisture. Though temperature and light sensors can

easily be deployed, moisture measurements are far more complex. Simple ther-

mocouples on the surface of the plant are insufficient. Instead the plant must be

destructively measured by removing it from its habitat and its weight compared

against a reference dry weight. Thus, an imager is an ideal choice of sensor, for

continuous measurement in the field.

The study of pollinator behavior and plant-pollinator interaction requires the

collection of pollinator occupancy data for individual flower over long periods of

time, a discrete signal [9]. Typically, summary statistics such as the number,

duration, and species of pollinator visitations are used to understand everything

from the effect of invasive plants on pollinator’s behavior [5] to the evolutionary

pressures pollinators place on flower diversification [20]. Temporally short data

collection periods have hindered the predictive abilities of these studies due to

the extraordinary cost of manual data acquisition. We aim to augment existing

data collection efforts through automatic efforts to reliably capture these discrete

events.

We also aim to enable data collection efforts previously unavailable to domain
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scientists by scaling our discrete signal approach to cover large spatial regions.

For example, Fontaine et. al. [30] studied how the density of bumblebees in a

given region affects their choice in flowers. In this study’s current form, data

is manually collected necessitating a very short collection period and a limited

collection region. We can expand the duration and area studied by collecting

the required density estimates using an actuated camera. This approach enables

more complex studies that would have been previously impossible.

1.4 Contributions

• Application evaluated image-based sensor template procedures:

Define a set of procedures to correlate images to biological and ecological

signals of interest using a series best-of-breed computer vision, image pro-

cessing, and statistical learning algorithms. We will evaluate the prediction

accuracy of this procedure in the context of specific applications, showing

how to leverage intrinsic properties of that particular instantiation of the

process. Using the procedures that we developed, we test our ability to mea-

sure photosynthesis of a drought-tolerant moss, Tortula princeps, to help

ecologists understand its habitat requirements and long-term grown trends.

Additionally, we test our ability to measure both pollinator occupancy for

single flowers and density of occupancy for an entire field, to help biologists

better understand pollinator behavior and plant-pollinator interactions.

• Field-robust algorithms and methodology: We have found that many

of the best-of-breed algorithms make unacceptable assumptions and require

modification. For example, we can not directly extract image features from

field imagery because changing natural illumination has a significant effect
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on the image’s appearance unless these effects are reversed by ambient

illumination detection and compensation. Similarly, background models fail

when considering natural scenes with significant foreground motion without

the addition of image registration through the introduction of an easily

identified region of interest. More generally, we articulate a methodology

for making algorithms robust to the field conditions present in real-world

applications.

The rest of this dissertation is organized as follows. Chapter 2 considers using

imagers to estimate continuous signals. A template procedure for predicting

discrete signals is presented in Chapter 3. This approach is scaled to predict

discrete signals over entire regions in Chapter 4. Finally, we describe avenues of

future work in Chapter 5 and draw conclusions in Chapter 6.
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CHAPTER 2

Predicting Continuous Signals

In this chapter, we discuss the prediction of continuous signals from imagery of

natural scenes. Though specific sensors may exist to measure these signals, they

require either destructive modification of the environment or brittle equipment,

making long term deployment difficult. Instead, we propose using a properly

calibrated imager to predict these continuous signals. To motivate our analysis,

we consider a representative continuous signal: the measurable bi-product of moss

photosynthesis, CO2 flux. We leverage the fact that this signal has is strongly

correlated with the color of the plant in addition to being temporally smooth.

Such an imager-based sensing system allows scientists to acquire high temporal

resolution field measurements of plant photosynthesis that could not be acquired

previously.

2.1 Introduction

Calibrating an imager for use as a sensor requires two fundamental steps: device

calibration and target signal modeling. The process we propose, depicted in

Figure 2.1, is constructed from a series of models that eventually produce the

signal of ecological interest. We choose this configuration both because it is

suggested by the physical model of image formation and because it allows us to

easily reuse existing algorithms. The output of the device calibration stage is
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Device

Calibration

Signal

Estimation
Image ! Target Signal

Figure 2.1: The process we propose consists of the two logical parts depicted here: device
calibration and signal estimation.

either illumination invariant image features of the relative spectral reflectance of

the subject. The choice is largely application specific and typically depends on

the availability of ground truth data; in some cases, it may be difficult to collect

accurate relative spectral reflectance data while capturing the signal of interest.

The first step in device calibration is the extraction useful features from the

available images. In order to perform meaningful feature extraction, we must

account for the spectral response characteristics of the CCD (charge coupled de-

vice) or CMOS (complementary metal-oxide semiconductor) sensor as well as

the spectral power distribution (SPD) of the incident light. The general form

of this calibration, known as color constancy [66], has traditionally been diffi-

cult. Various computer vision applications, such as object recognition and image

segmentation, would benefit if such calibration could be performed accurately in

general. In our applications, we are free to fix the location of the observer (rel-

ative to the subject) as well as the subject itself. In particular, we can produce

accurate models of both the changing incident illumination and subject’s spectral

reflectance. These simplifying assumptions make this specific instantiation of the

color constancy problem more tractable.

Once invariant image features have been extracted, they must be correlated

to the signal of interest. Deriving such a correlation requires the construction

of a model based on experimentally acquired data from imagers, and perhaps

co-located traditional sensors. In the case of photosynthesis measurement, tem-

perature, PAR (photosynthetically active radiation), and rainfall sensors are par-
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ticularly useful. Including traditional sensors, in addition to the imager, has two

important benefits. First and foremost, we can use sensing modalities that are

correlated with the phenomena to increase prediction accuracy. Second, by in-

corporating field-deployable sensors into the model, we can more easily reason

about the model’s accuracy under field conditions.

Once devised, we must evaluate the prediction accuracy of the model. This

is somewhat complicated by the fact that ground truth data is unlikely to be

available in the field. By using a combination of laboratory experimentation,

simulation, internal consistency checks, and other environmental cues we can

leverage domain relevant information to evaluate our results. The design of the

laboratory experiments is especially important. We must capture environmental

signals easily measured in the field so as to corroborate the laboratory findings.

The state-of-the-art vision algorithms we use to form the various models were

formulated independently. Some are formulated in a regression context, and

others are formulated in a Bayesian context. Additionally, they make varying

physical assumptions about the lighting, subject, and camera. As a result, their

combination in our framework a bit awkward. In future work, we intend to

sort out this inconsistency, placing all the stages of our procedure on consistent

theoretical ground.

The remainder of the chapter is organized as follows. Section 2.2 discusses

illumination modeling and estimation as well as reflectance modeling and estima-

tion. Section 2.3 discusses the procedure for estimating a target signal through

a spectrum of potential mechanisms. An overview of the proposed procedure is

described in Section 2.4 and Section 2.5 evaluates this procedure in the context

of an application. Work related to our approach is discussed in Section 2.6 and

conclusions are drawn in Section 2.7.
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2.2 Device Calibration

The purpose of device calibration is to undo the effect of changing environmen-

tal conditions on the image formation process. In particular, we would like to

accurately reconstruct the relative spectral reflectance of the subject given color

features extracted from an image. Formally, image formation is composed of three

components: the spectral power distribution (SPD) of the incident light E(λ),

the relative spectral reflectance of the surface S(λ), and the spectral response of

the imaging device’s sensor R(λ). There are two types of spectral reflectance.

Light that reflects directly off the surface is known as interface reflectance, usu-

ally seen as the spectral highlight off of a glossy surface. Light that enters the

surface and interacts with colorant particles is known as body reflectance [108].

Assuming the surface is matte or Lambertian, having only body reflection, the

response of the imager’s kth sensor to a (lighting, surface) pair over the spectral

range w is defined by Equation 2.1.

rk =

∫
w

E(λ)S(λ)Rk(λ)dλ (2.1)

For typical visible light imagers, w = (400nm, 70nm) specifying the visible

range, and k = 3 corresponding to the red, green, and blue sensors in the imager.

Since common commercial imagers intend for their output to be consumed by

humans, having only three color sensors is reasonable; human color vision was

determined to be a 3-dimensional space by color matching experiments [26]. That

is, the use of three orthogonal sensors can represent most1 of the gamut of human

1Any basis defined by human-visible colors cannot represent the entire gamut of human
vision using positive coefficients. This fact can be described geometrically. The projection of
the 3-dimensional human color gamut onto a plane of uniform brightness (chromaticity space)
results in a convex polygon [39]. In this plane, the basis functions are represented by points,
and the space of all colors represented by their linear combination using positive coefficients is
a triangle. There is no triangle composed of points within a convex polygon that contain all
points within that polygon.
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color vision. However, we are not interested the resulting human-perceived color;

instead, we are interested in S(λ), the relative spectral reflectance of the matte

surface contained in the image, and the lighting corrected image.

This formulation is a bit simplistic. In particular it doesn’t capture second-

order effects attributed to the camera’s lens, shutter speed, and aperture. We

assume that the lens’ distortion is uniform across the image and that the shutter

speed an aperture are set such that the sensor is not saturated. An effect we can’t

ignore is JPEG image compression [48]. This compression algorithm is both lossy

and has a spacial component, considering multiple adjacent pixels at a time. We

consider the effects of JPEG compression on this model in Section 2.5.2.

2.2.1 Modeling Illumination and Relative Spectral Reflectance

We build a 3-dimensional linear model for the surface reflectance of the subject

using principle component analysis (PCA) [86]; this results in a set of basis func-

tions B and their weights w. We can write this in matrix notation (Equation 2.2)

if we discretize the spectral range into n bins; B is a n × 3 matrix, w is a 3 × 1

weight vector, and Ŝ(λ) is a n× 1 vector that estimates of the surface’s spectral

reflectance. Since we are considering outdoor ecological applications, we can ap-

ply previous work [49] that has similarly defined a 3-dimensional linear model for

daylight (Equation 2.3) using PCA.

Ŝ(λ) ≈ Bsws (2.2)

Ê(λ) ≈ Bewe (2.3)

Initially, we build the lighting and reflectance models independently. In the

future, we intend to build these models iteratively because simply modeling each

independently is sub-optimal [70]. In particular, the reflectance model can be
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designed to best fit the areas of most change when illuminated by different rel-

evant spectra. Similarly, the measured spectral sensitivity of the imager can be

incorporated to reduce the model’s emphasis on wavelengths for which the imager

has minimal sensitivity.

Once we have models for illumination and relative reflectance, we must miti-

gate the effect of the camera’s shutter speed and aperture on Rk(λ). Changing the

shutter speed and aperture results in the image being under- or over-exposed. We

assume that this effect is uniform across the sensor and that the sensor is never

completely saturated (avoiding the loss of information). By using 2-dimensional

chromaticity coordinates, instead of the raw 3-dimensional color coordinates, we

can compensate for this uniform change in brightness. The chromaticity space is

the projection of the 3-dimensional color space onto a plane of uniform brightness,

and thus mitigates the effects of exposure. The chromaticity space we choose is

the x and y dimensions of the xyY color space as defined by CIE [44].

r ≈ Ê(λ)Ŝ(λ)TR(λ)

r ≈ (Bewe)(Bsws)
T R (2.4)

Our resulting model for image formation (Equation 2.4), has six unknowns:

the we and ws weight vectors. As described, this system is under constrained since

we only have two equations as defined by the chromaticity coordinates produced

from the three sensors available in commercial imagers. Thus, we must estimate

both we and ws using the distribution of chromaticity coordinates present in the

image. We proceed by estimating these values in sequence. First, we estimate

we to produce the illuminant’s spectra. Then, we transform the image to place

it under a reference illuminant. From this “registered” image, we estimate ws

resulting in Ŝ(λ), an estimate of the subject’s spectral reflectance. We assume

that the same camera is used to produce all of the analyzed images, and thus the

18



effect of Rk(λ) on the final pixel value is constant across all images. Thus, we

need only compensate for E(λ) when creating the registered image.

2.2.2 Estimating Incident Lighting

There are a number of lighting estimation techniques suggested by the literature

[3], each making different assumptions about the lighting and subject present in

the image. Since our applications may have a fixed set of possible illuminants (for

example, a subset of daylight illuminants) and typically have a single subject, we

would like leverage that information during lighting estimation. Depending on the

nature of the application we can use either the Color by Correlation [29] algorithm

or the Gamut Mapping algorithm [31] [27] [2]. The Color by Correlation algorithm

assumes knowledge of both the subject as well as all possible illuminations. As

a result, it is only capable of predicting illuminations that it has “seen” before.

In contrast, the Gamut Mapping algorithm only assumes knowledge of image’s

subject. Consequently, it can predict an infinite set of possible illuminants.

By leveraging more application specific information, the Color by Correlation

algorithm has been shown to slightly out-perform [40] the Gamut Mapping al-

gorithm (both easily out-perform other more simplistic algorithms). Thus, the

trade-off between these two algorithms is simply generality versus accuracy. If

the set of possible illuminants can be defined, the Color by Correlation algorithm

is superior. If not, we must turn to the Gamut Mapping algorithm. Since the

choice of algorithm is application dependent, we present a short explanation of

each here.

19



Color by Correlation

The Color by Correlation algorithm computes a correlation matrix representing

the probability that given illuminant was present in a particular image. Each

column of the matrix is a possible illuminant, and each row is the probability

that a particular chromaticity coordinate would be observed for surfaces under

that particular illumination. Since chromaticity can take on any real value in the

range [0, 1], the space is quantized to make building a correlation matrix feasible.

Producing the log-likelihood is a simple application of Bayes’ rule. For a given

illuminant E and a given set of observed chromaticities Cim, Equation 2.5 defines

the probability that E was the illuminant for Cim. If we assume that the prior

probabilities for E and Cim are uniform, all illuminations and surfaces are equally

likely, then Equation 2.5 simplifies to Equation 2.6.

Pr(E|Cim) =
Pr(Cim|E)Pr(E)

Pr(Cim)
(2.5)

Pr(E|Cim) ∝ Pr(Cim|E) (2.6)

Further, we note that Pr(Cim|E) is simply the product of the probability of

observing each chromaticity c (Equation 2.7). Finally, if we take the logarithm

of both sides (Equation 2.8), we get the same value as produced by multiplying

the correlation matrix to a particular image’s binary chromaticity vector. The

binary chromaticity vector of an image is 1 for every value that is present in the

image, and 0 elsewhere.

Pr(E|Cim) ∝
∏
∀c∈Cim

Pr(c|E) (2.7)

log(Pr(E|Cim)) ∝
∑
∀c∈Cim

log(Pr(c|E)) (2.8)

There are two major shortcomings of this algorithm as suggested by Barnard

et. al. [3]; both are related to the assumption that the set of possible illuminants
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is fixed. First, the set of observed chromaticity coordinates may suggest that none

of the illuminants are possible. Second, the algorithm cannot predict a mixture

of known illuminants. To solve the first problem, they suggest smoothing the

frequency distribution of the chromaticity coordinates using a Gaussian filter.

However, this still requires us to train the algorithm using an illuminant set that

has complete coverage of all possible illuminants. As we suggested earlier, if such

a set cannot meaningfully be produced, then the Gamut Mapping algorithm is a

better choice for lighting estimation.

Gamut Mapping

The Gamut Mapping algorithm assumes a set of known surfaces defined by the

convex hull of their combined color gamut under a known illuminant. However,

it makes no assumption about the set of possible illuminants to which those

surfaces may be subjected. In this context, the gamut is defined to be the set

of all color coordinates that can be produced by the given surfaces, under a

given lighting, with a given camera [31]. More recent approaches [27] measure

this gamut in chromaticity space making it more robust to illumination intensity.

This algorithm attempts to derive a transformation (or change of basis) to map

the observed gamut under unknown illumination to the measured gamut under

a known illumination.

Eref =


d1 0 0

0 d2 0

0 0 d3

Emeasured (2.9)

These transforms, as represented by their diagonal matrices (Equation 2.9),

define the change in whitepoint between the reference illumination and the un-

known illumination. The whitepoint of an illuminant is the color coordinate for a
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pure white Lambertian surface as viewed under that illuminant. Thus, this trans-

form is equivalent to determining the properties of the unknown light source with

respect to the reference. In general, lighting transformation matrices (as repre-

sented by Equation 2.4) are not purely diagonal. However, von Kries coefficient

law tells us that the diagonal values are most influential [47].

Unfortunately, there is no unique transform because we incorrectly assumed

that the unknown illuminant’s gamut was equal to the measured gamut. In fact,

the measured gamut is a proper subset of the unknown gamut and we have only

one sample image’s gamut under that illuminant. This causes there to be several

transforms that map the unknown illuminant to the reference illuminant. How

to chose the “best” transform from this set has been contested in the literature.

All solutions involve choosing the “average” solution, which has slightly different

meaning depending on the exact problem formulation [2].

Since the Gamut Mapping algorithm can potentially produce any white point

as output, it is clearly more general than the Color by Correlation algorithm.

However, it makes the assumption that the camera’s sensors are sufficiently nar-

row bandwidth that Equation 2.1 can be simplified to Equation 2.10. That is,

they can be modeled as impulse functions at some wavelength λk, typically the

center wavelength of the camera’s sensor.

rk = E(λk)S(λk) (2.10)

This assumption is clearly not true of typical cameras. A technique known as

sensor sharpening [4] attempts to map a camera’s wide bandwidth sensors to

narrow bandwidth (sharpened) sensors. Additionally, von Kries coefficient law

is also somewhat unrealistic. However, it has been shown [28] [111] that for

“reasonable” illuminants (such as daylight), it appears to hold.
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2.2.3 Changing Illumination

After we’ve estimated the lighting present in a given image, we must transform

the images to be under some reference illuminant. We call this operation re-

lighting the image. Since we are considering outdoor phenomena, we choose D65

[77] as the reference illumination; D65 is an approximation of daylight defined

by CIE [44]. Producing a re-lighting transform when using the Gamut Mapping

lighting estimation algorithm is trivial: we simply compute the reference gamut

from images illuminated by a D65 source and use the resulting diagonal lighting

transform.

Building a re-lighting transform from the output of the Color by Correla-

tion algorithm requires that we produce a lighting transformation matrix. Like

Gamut Mapping, we assume that the camera’s sensors are impulse functions at

the sensor’s center wavelength. We can define the lighting transformation Tlight,

in terms of Equation 2.10, as Equation 2.11.
E1(λR)S(λR)

E1(λG)S(λG)

E1(λB)S(λB)

 = Tlight


E2(λR)S(λR)

E2(λG)S(λG)

E2(λB)S(λB)



Tlight =


E1(λR)/E2(λR) 0 0

0 E1(λG)/E2(λG) 0

0 0 E1(λB)/E2(λB)

 (2.11)

We choose these center wavelengths to be λR = 620nm, λG = 530nm, and

λB = 450nm; these are close to the center wavelength of the sensors on typical

digital cameras [28]. The Color by Correlation algorithm produces E2(λ) and we

have already assumed that E1(λ) is the standard D65 illuminant. To re-light the

image, we need only compute the diagonal lighting matrix and then transform

each of the image’s pixels individually.
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This formulation only works if we specified E1(λk) and E2(λk) in absolute

terms. However, the spectral power distribution of an illumination is typically

normalized such that E(λ560) = 100 (as is the case for the D65 specification).

This has the effect of multiplying Tlight by β as defined in Equation 2.12.

β =
E2(λ560)

E1(λ560)
· 100 (2.12)

The β term can be factored out of the resulting transformed image if we use

chromaticity coordinates instead of absolute color coordinates. This is intuitively

true since chromaticity coordinates are designed to be independent of brightness,

the effect for which β compensates. Further, using chromaticity coordinates is a

reasonable requirement as we have already leveraged chromaticity coordinates to

produce a brightness invariant image for lighting estimation.

2.3 Modeling the Target Signal

There are a spectrum of available mechanism we could use to predict the target

signal from the data we have collected. At one extreme, we can estimate the

relative spectral reflectance of the subject, since we believe that to be correlated

to the target signal, and the model the signal from that estimate. At the other

extreme, we can model the target signal directly from image features after the

lighting transformation has accounted for varying incident illumination. Clearly,

there is a variety of other intermediate approaches where both the image features

and the relative spectral reflectance can be modeled together.

Both of these approaches have merit. Using relative spectral reflectance as an

intermediate is beneficial since we can measure it in the field, allowing a form of

model validation not otherwise available. However, measuring this quantity in the

lab may be prohibitively difficult since we would have to disturb the measurement
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of the target signal itself. We can mitigate this concern by using the image

features directly, but this then requires us to produce an alternate method to

assess the validity of our results.

The correct approach is an application specific choice. If the data are easy

to collect and the phenomena is related to relative spectral reflectance, using an

RSR-based model is likely the correct approach. For our application, however,

such data collection is not possible since we would loose all precision in our CO2

measurement in the lab. Thus, we are forced to use a less structured approach

based on the image features directly. What follows is a more detailed descrip-

tion of both approaches. Further, in Section 2.5.3 we evaluate the RSR-based

approach’s ability to predict RSR in the field, and we evaluate the image feature

based approach’s ability to correctly estimate the target signal.

2.3.1 Signal Estimation Through Relative Spectral Reflectance

To perform signal estimate based on the relative spectral reflectance of the speci-

men, we must first compute that reflectance. This requires estimating the weights

ws for the relative spectral reflectance basis functions Bs (see Equation 2.2) de-

rived by using PCA. Unlike lighting estimation, however, we have less insight

into the relationship between relative spectral reflectance and the chromaticity

coordinates. Accordingly, we choose to estimate the parameters of our relative

spectral reflectance model using non-linear regression. The input to this non-

linear regression will be the 2-dimensional chromaticity coordinates. Similar to

the Color by Correlation algorithm, we quantize the chromaticity space into n×n

bins, using each as feature in our predictive model. These features are stable be-

tween images since we previously corrected for changes in illumination using the

re-lighting transform.
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Our previous work [42] showed that using this technique produced reasonable

results for laboratory data. The dataset used in that work had consistent illu-

mination since all images were taken under controlled laboratory lighting. As a

result, it did not require the images to be chromatically registered using a re-

lighting transform. Instead of using the x and y dimensions of the xyY color

space, that work used the H and S dimensions of the HSV color space. Like

xyY , HSV is a deformation of the RGB color space that extracts the bright-

ness (the V dimension) from the chromaticity (the H and S dimensions). Unlike

the formulation described here, the target signal was directly modeled from the

quantized chromaticity.

Data about the relationship between the relative spectral reflectance, other

co-located sensor, and the signal of interest can then be gathered in a laboratory

experiment. Such experiments, typically suggested by the domain science, must

be sufficiently realistic such that derived models have predictive power in the

field. Similar to spectral reflectance estimation, we have little insight into how

the spectral reflectance and corrected chromaticity relate to the target signal.

We suggest that this relationship be modeled by non-linear regression; specif-

ically polynomial multivariate adaptive regression splines (PolyMARS) [33]. We

suggest PolyMARS rather than regression trees or other non-parametric ap-

proaches since it produces continuous values as opposed to the discrete values

represented by the regression tree’s leaf nodes.

2.3.2 Signal Estimation Through Direct Feature Modeling

To estimate the signal from the chromaticity features directly, we again turn to

non-parametric non-linear regression in the form of PolyMARS [33]. Further, we

attempt to leverage domain-specific structure present in the application. For the
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application we consider, we know, from studies of drought tolerant moss [85],

that there are biological changes that occur as the moss prepares for a drought.

Since these changes only reverse in the presence of water, it is clear that there we

must model the moss as a system that has some limited memory of its previous

states.

To model this memory, we provide N temporally shifted version of each input

feature to the model for consideration. This has the effect of allowing the model

to view the previous state of the system when constructing the current state.

However, this approach has the potential to significantly increase the size of the

input data for our model. To prevent this feature explosion, we first model the

system without any temporally shifted features, only adding temporally shifted

versions of features chosen by the first modeling pass.

Incorporating time in this fashion would appear to make our model sensitive

to deviations in the sampling rate or the phenomena’s rate of progression. Since

we are in control of the deployment, we can ensure that the sampling rate is the

same as that used to train the model. To better account for the changes in the

phenomena’s rate of progression, we can leverage the fact that these change only

serve to stretch or shrink an characteristic curve. The characteristic shape of

the temporal component can be captured using a varying coefficient model [38].

Here the temporal component is modeled as a polynomial using our various input

features as the coefficients. We show in Section 2.5.3 that such an approach is

not required to get sufficiently accurate predictions. As a result, we leave this to

future work.
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2.3.3 Model Validation

For the ecological systems we consider, there is no meaningful way to capture

ground truth in the field. As a result, we must validate the predictions of our

model through other means. This requirement can be partitioned into two types

of validation. First, we would like to ensure that the magnitude of individual

predicted measurements are accurate. Second, we want to ensure that the process

we are modeling progresses at a reasonable rate through time. Any validation

procedure is likely to be highly application specific. However, there are certain

best-practices that can be applied in general.

Previous ecological work [76] that studied CO2 uptake in other plants en-

countered a similar problem. Their solution was to relate their predictions to

an expectation of plant growth. In laboratory experiments, they correlated their

model’s estimates with an increase or decrease in leaf count. This approach takes

advantage of domain specific information to validate the model: a net CO2 gain

should result in more leaves and a net CO2 loss should result in fewer leaves.

Validating the model simply required measuring leaf count in the field and com-

paring to the model’s prediction. An extension of this approach could ensure

internal consistency of the model by measuring net CO2 gain during a period

where no leaves were lost or created. During these periods, we expect there to

be a net zero gain in CO2.

In general, this metric suggests that easily observable characteristics of the

system (either visual cues or other deployed sensors) can be used to validate

prediction accuracy. This seems tautological: if such metrics existed, we would

use them to help model the system. However, we are interested in the absolute

instantaneous value of the signal, and this type of metric essentially measures the

integral of that signal’s value over time.
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This form of validation metric attempts to remove absolute error from our

predictions but contains no time component. As suggested earlier, the processes

we would like to model have memory and produce continuous signals over time.

Factoring in the time component again requires application specific cues. For

example, for measuring photosynthesis in moss, we know that such activity only

happens while the moss is hydrated. The moss become hydrated briefly at dawn

(from morning dew) and after a rain. Further, the duration of hydration mostly

depends on the ambient air temperature and relative humidity. Thus, we can

use the time of day or quantity of rain in addition to temperature and humid-

ity to estimate the duration of active photosynthesis. Again, this estimates an

orthogonal signal but allows us to evaluate the accuracy of our model.

A final approach is to build more realistic (less controlled) laboratory experi-

ments. This requires that we be able to measure the signal of interest in simulated

field conditions, which may not always be possible. Following the moss example,

we could perform the photosynthesis measurement outside under natural light

with uncontrolled (but representative) temperature and humidity. This type of

experiment would provide us with measurements of the target signal that can be

directly compared to the predicted values.

2.4 System Overview and Generalizability

The process we have described is shown in Figure 2.2. It makes a few specific

assumptions about the subject, the camera, and the application itself. We assume

that the subject of the image can be modeled as a Lambertian surface, it is

matte with no spectral highlights. Though not a very restrictive assumption, we

assume that the illumination and reflection can be accurately modeled; this is

the case for daylight and most natural surfaces. The specifics of the lighting-
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Figure 2.2: A graphical representation of Equation 2.4 with the addition of signal estimation.
The models (boxes on the top row) are trained using the data depicted below each.
These data are experimentally acquired. Note, we can train signal estimation with
or without reflectance estimation. In this particular instantiation of the process,
directly predict CO2 uptake from image features.

related assumptions made by the illumination estimation algorithms we employ

were discussed earlier. We assume all images were taken with the same camera

and that the shutter speed and aperture were adjusted to avoid saturating the

sensor (as is typically the case for most modern cameras). We ignore second-

order camera effects, like lens distortion, assuming that they are uniform across

the image and have little influence. Finally, we expect there to be other in-

situ ecological sensors available that can be used both for modeling and model

validation.

Our process is derived directly from the physical model of image formation,

and is broken into stages. First, we estimate the lighting present in the scene

using either the Color by Correlation or Gamut Mapping algorithm. Given the

lighting, we can perform a change of basis to place the scene under a reference

illuminant. Next, we predict the relative spectral reflectance of the surface in

the transformed image. Finally, using co-located sensors and either the predicted

relative spectral reflectance or directly extracted image features, we estimate the

target signal using non-linear regression.

The current formulation suggests that the parameters of the lighting, re-

flectance, and target signal models be computed in sequence. An alternate ap-

proach would be to estimate the parameters of all three models at once. Such
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(a) Hydrating the moss (at 16:45) (b) Moss actively photosynthesizing (at 16:50)

Figure 2.3: Moss at James Reserve during July 2008 after a long dry period. (a) shows us
hydrating the moss and it beginning to photosynthesize in the moist areas. After
only 5 minutes, much of the moss is green and photosynthesizing as seen in (b).

an approach could conceivably do equally well, but discards seemingly important

information. Namely, it doesn’t explicitly attempt to account for the predicted

lighting, possibly causing more error in reflectance and target signal estimation.

Yet, such an approach is an interesting generalization since it is able to apply

domain knowledge, in the form of the individual models, without any additional

supervision. We intend to evaluate this alternate approach in future work.

2.5 Application-driven evaluation: a case study

As suggested earlier, estimating the photosynthesis of Tortula princeps, a drought

tolerant moss, is an example where imagers can become very useful sensors. Pre-

vious work [76] has produced monthly estimates of photosynthesis for plants in

the field. Using field-based imagers, we can easily produce hourly photosynthesis

estimates. High temporal resolution is of particular interest for this applica-

tion since this moss can begin photosynthesizing mere minutes after becoming

hydrated after a long dry spell (Figure 2.3).
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Previous work suggests that relative spectral reflectance as well as the color

of a plant is related to that plant’s photosynthesis and overall CO2 uptake [102].

This intuitively makes sense since greener plants are rich in chlorophyll, a re-

active photo-pigment involved in carbon uptake [34]. Thus, we expect that the

light reflected from an actively photosynthesizing plant would be related to the

relative spectral reflectance of the chlorophyll molecule. In the following sections

we endeavor to calibrate an imager to measure the relative spectral reflectance

of this moss. We will then model the CO2 uptake of the moss directly from

image features, showing its accuracy on both lab data and under simulated field

conditions.

The goal of this ecological study is to determine the effect of short summer

rain events on the moss’ ability to survive. Ecologists hypothesize that short

summer rain events are detrimental to the moss because it causes the moss to

expend more carbon than is is able to uptake. Thus, it has been suggested that

this moss is capable of surviving long hot summers as long as there is minimal

rain during those periods. Using the estimates provided by our imager-based

sensor, we can test this hypothesis.

2.5.1 Experimental Setup

This experiment attempts to performs two related functions. First, we aim to

model the relative spectral reflectance of the moss as it drys over the course of a

day. Second, we aim to show we can use a camera to accurately estimate the rel-

ative spectral reflectance of a fixed subject under realistic (and changing) natural

illumination. We acquired a number of moss samples from the James Reserve,

seen in Figure 2.3. We hydrated the moss and allowed it to dry for approximately

6 hours, from 12pm until 6pm. We collected samples of the illumination, moss’
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relative spectral reflectance, and images containing the moss and MacBeth Color

Checker with an interval of 15 minutes. In total, 23 samples were collected. As

mentioned earlier, there is a temporal component to the model validation. By

allowing the moss to dry over a period, we attempt to include those temporal

variation in our training data.

In order to measure both the incident illumination as well as the plant’s

relative spectral reflectance, we used a spectroradiometer (Licor 1800 [59]). To

measure the absolute spectral power distribution of the incident illumination,

we calibrated the response of the spectroradiometer using a reference tungsten

illuminant, similar to the CIE A reference [44]. Similarly, the spectral reflectance

of the plant was measured with respect to same tungsten illuminant. Samples of

both the plant and the incident illumination were taken at 2nm increments from

390nm to 750nm.

Images of moss were taken using two standard consumer-grade cameras with

their auto white-balance settings turned off. We used a Canon EOS 450D [14]

to capture 10MP images in both RAW format and JPEG format; this camera

represents a relatively high-end imager. Additionally, we used a Pentax Optio

S5z [83] to capture 5MP images in JPEG format; this camera represents a lower-

end imager. Each image contained both the moss sample as well the MacBeth

Color Checker reference; this chart contains 24 color swatches of known relative

spectral reflectance.

2.5.2 Imager Calibration

We verified that the illumination we measured using the spectroradiometer was

reasonable by comparing it to the CIE standard D65 illuminant as seen in Fig-

ure 2.4(a). Each of these spectra have been normalized such that E(λ560) = 100.
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Figure 2.4: The spectral power distribution (SPD) of the illumination measured during the
course of the experiment as well as the CIE standard D65 illuminant is shown in
(a). The accuracy of the daylight model built by Judd et. al. [49] for our measured
illuminants is plotted against time in (b), the red line is the mean and the gray
lines are the first standard deviation. Below, we show the fit for the sample with
the largest RMS error (the 21st sample at 315 minutes).

The CIE standard D65 illuminant is an approximation of daylight as measured

in the northern hemisphere. We see that our measured spectra have the same

characteristic shape as D65 although they are slightly bluer late in the day; they

contain more power in the 400nm–500nm range than D65. This similarity suggests

that our measurements are producing reasonable spectra.

Using the daylight model derived by Judd et. al. [49], we computed the

weights (we) of the basis functions (Be), as defined in Equation 2.3, for our

measured illuminants. As shown in Figure 2.4(b), the RMS error of this model

does follow some time dependent trend through the course of the day. Initially,

this might suggest that the model is missing some relevant information. However,

we see that the fit for the example with the largest absolute RMS error still is quite

good. This further confirms that our measurements are accurate. As we see in
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(a) CIE Chromaticity Diagram
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(b) Chromaticity shift of the MacBeth Color Chart

Figure 2.5: The standard chromaticity diagram shown in (a) [110], as defined by CIE [44]. (b)
shows the chromaticity shift of the MacBeth Color Checker over the course of 6
hours illuminated by daylight. Both figures are shown in the xyY color space.

Figure 2.4(a) the lighting measurements are all quite similar in form. As a result,

we choose to use the Color by Correlation algorithm described in Section 2.2.2.

This algorithm requires that we convert the RGB color coordinates of our images

into discretized chromaticity coordinates. We choose to use x and y dimensions

of the xyY color space, as defined by CIE; the chromaticity gamut defined by

this chromaticity space is shown in Figure 2.5(a).

To demonstrate the color shift caused by lighting, we plot the discretized

chromaticity coordinates of the MacBeth Color Chart from the first and final

samples of the experiment in Figure 2.5(b). Here we have chosen to partition the

xy plane into a grid of 32× 32 discrete chromaticity coordinates, as suggested by

[29]. Each dot represents a discrete coordinate that contains at least one pixel.

Since the image’s subject is fixed, the shift in color can only be attributed to
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change in illumination. This is the effect we are attempting to remove.

The 2-dimensional chromaticity distributions of the sampled images are stored

in matrices that we convert into row-major ordered vectors. Each vector is nor-

malized by the number of pixels in the image and associated with the illumination

measured using the spectroradiometer; these become the columns in the corre-

lation matrix. This is a slightly simpler formulation of the Color by Correlation

algorithm because we need not burden the model with the chromaticity distri-

butions of other subjects under the same lighting; we have only one subject. To

produce the log-likelihood that example image has been illuminated by particu-

lar illumination (Equation 2.8), we simply multiply the correlation matrix by the

binary chromaticity vector. Recall, this binary vector is 1 for all chromaticity

coordinates found in the example image and 0 elsewhere.

The training set for the Color by Correlation algorithm is selected at ran-

dom from the set of experimentally obtained samples. We hand segmented the

images from both cameras into an images containing only the moss and images

only containing the MacBeth Color Checker. Figure 2.6(a) shows average RMS

residual error between the predicted illumination and the measured illumination

as a function of the training set size. Interestingly, for large training set sizes

(n >= 16), the moss images had a slightly lower error than the images con-

taining the MacBeth Color Chart. This is odd because the moss’ reflectance is

changing over time, where as the chart’s reflectance is constant. In these cases

approximately 70% of samples were used for training, so we believe this is simply

an effect of over-training the model.

Though not shown, the model trained using both raw and JPEG images taken

from the Canon camera produced similar residual error. This interesting result

shows that JPEG compression has a minimal effect on the accuracy of the Color
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Figure 2.6: Error of the Color by Correlation model derived from images of moss and the
MacBeth Color Checker taken with the Pentax Optio S5z camera under varying
illumination. (a) shows the reduction in error as the size of the training set increases.
(b) shows the histogram of testing error on moss examples for a training set size of
12 images.

by Correlation algorithm when applied to these data. We can understand why by

considering how JPEG compression works. First, it converts the image into the

Y CbCr color space, which has two chromaticity dimensions and one brightness

dimension similar to the xyY color space we used to train our model. Next, it

computes the discrete 2-dimensional cosine transform of each 8 × 8 pixel block

in the image. This produces the spatial frequency of colors within a given image

block. Leveraging the fact that humans are more sensitive to lower frequency

variations in color and brightness, JPEG compression discards some information

about the high frequency signals, retaining most information about the lower

frequency signals [48]. For both the moss and the MacBeth Color Chart, the

spacial frequency in all three color dimensions is relatively low. This suggests

that JPEG compression would have minimal effect on the chromaticity-based
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Figure 2.7: The Jenson-Shannon Divergence, before (top) and after (bottom) re-lighting, of all
pairs of images containing the MacBeth Color Chart under varying daylight illumi-
nation. Optimally, all divergences would be zero after the lighting transformation.

signals we are using to build our model.

Once we obtain an accurate estimate of the image’s lighting we can correct

for that illuminant using Tlight (see Equation 2.11). We test this transform on

our segmented images containing the MacBeth Color Chart because its spectral

reflectance doesn’t change (unlike the moss). To visualize the results of this

transform, we choose to compute the 2-dimensional Jenson-Shannon Divergence

(a symmetrical version of the Kullback-Leibler divergence [55]) of the discretized

chromaticity coordinates. We compute this divergence for all pairs of examples

and expect the divergences to small since the subjects are identical.

Histograms of these divergences are shown in Figure 2.7. As we can see,

the lighting transformation compresses the distributions of divergences towards

zero as expected. An unfortunate consequence is that it has also increased the
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variance among the previously well clustered examples. We hypothesize that

this is caused by inherent error in estimating our sensors as impulse functions,

a poor choice of center wavelengths, or color alterations resulting from JPEG

image compression. Recall, we previously assumed that the camera’s sensors

were impulse functions (responding to a single center wavelength) such that we

could compute a diagonal lighting transformation. In future work, we intend to

try develop another algorithm, perhaps based on sensor sharpening, to further

compress this divergence. Any improvement at this stage in our processing will

improve the accuracy of our predictions.

2.5.3 Estimating the Target Signal

Prior ecological analysis [36] of this moss has produced very detailed measure-

ments of CO2 uptake in the laboratory. The moss was placed in a chamber under

controlled temperature and lighting conditions. Ambient air was drawn through

a series of tubes such that some passed through the chamber as a sample, and

the rest was unaltered as a control. Using an infrared gas analyzer [60], the air

that had passed through the chamber was compared to the control to compute

the relative increase or decrease of CO2 in the air by volume. The instantaneous

CO2 uptake of the moss ranged between -1 µmol m−2 s−1 and 6 µmol m−2 s−1

with an error of ± 0.5 µmol m−2 s−1. Through the experiment, a florescent light

was turned on and off at 12 hour intervals to simulate day and night. During

the light periods, the moss was kept at 15 ◦C; during the dark periods, the moss

was kept at 10 ◦C. In addition to the CO2 and temperature measurements, PAR

measurements and images of each sample were collected at 10 minute intervals.

The experiment captured the moss’ progression from hydrated to dry (known as

a dry down) over the course of a eight days.
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In addition to a series of moss dry downs, other measurements were taken to

produce an environmental productivity index (EPI) [76] for this moss plant. This

index posits that there are three factors that limit a plant from gaining carbon

at its maximal rate: availability of light, availability of moisture, and suitable

temperature. Further, it suggests that independently measuring the effect of

each dimension on the plant’s respiration is sufficient to reconstruct the plant’s

behavior in the field. For example, temperature was varied from -1 ◦C to 34 ◦C

while the moss was kept moist and well lit. Then, by simply multiplying the

limiting factors together we can predict the approximate percentage reduction in

CO2 uptake as compared to the moss’ maximum absorption.

The problem with using this model in the field is the lack of information

about the moss’ moisture levels; temperature and PAR are easily measured. As

a surrogate, we intend to use the moss’ relative spectral reflectance, which has

been shown to be correlated with moisture as well as CO2 uptake [34]. Thus,

to leverage the data previously collected, we must compute the relative spectral

reflectance of the moss in the images during the dry down. Unfortunately, if

we were to apply our spectral reflectance model to compute the relative spectral

reflectance for our existing datasets, we would not know if they aligned with

the actual spectral reflectance values, and could not appropriately validate our

results.

As discussed earlier, there are a spectrum of approaches that can be used to

estimate the target signals. Since we do not have the necessary data to leverage

relative spectral reflectance to model the target signal, we instead focus on direct

estimation using features of the lighting corrected images. Still, we first consider

the accuracy of our relative spectral reflectance estimation, since it is a compelling

approach that may be usable in other applications.. Subsequently, we discuss the
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(b) RSR Basis Functions

Figure 2.8: The CO2 response of a drying moss is shown in (a). The vertical lines represent a
discontinuity in the graph where data wasn’t collected for 12hrs while the moss was
not exposed to light. The basis functions (b), as determined by functional PCA for
the relative spectral reflectance of the moss as it dries over time.

target signal estimation accuracy of a model based solely on image features,

From the work done by Graham et. al. [36], we have six datasets, each

acquired as a different moss sample dried over time. An example of the CO2

uptake of the moss during the light periods is shown in Figure 2.8(a). The

training data for our model is a set of data points randomly sampled from five

of the moss sequences; in all cases, no more than 50% of the data points from

any given sequences are selected. Our model is then tested on the sixth sequence

in its entirety. We then perform cross-validation by rotating the training and

testing sets. The our evaluation metric is the average RMS error for all possible

rotations. The RMS error of the laboratory instruments is approximately 0.1

parts per million (ppm) [42], and biologists feel that 0.5 ppm is acceptable for

this application.
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(a) Spectral reflectance model error
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Figure 2.9: The RMS residual error of the spectral reflectance predicted by our procedure is
shown in (a); the red line is the average error and the gray lines are the first standard
deviation. In (b) we show the predicted spectral reflectance of the observation with
the largest error (observation 4 at time 60 minutes).

Estimating Relative Spectral Reflectance

After the images have been transformed we must predict the parameters of the rel-

ative spectral reflectance model (shown in Figure 2.8(b)). We have chosen to use

only the first three basis functions for our model because they account for 99.96%

of the variance contained in the moss’ measured relative spectral reflectance. The

first basis function, plotted in black, represents the average spectral reflectance

across all samples. The second and third basis functions, plotted in red and

green respectively, show the type of variation seen. In particular, we see that

there is significant variation in the blue (400nm – 450nm) and red (675nm –

750nm) parts of the spectrum. We expect some variation near 400nm because it

is near the minimum wavelength our spectroradiometer can measure. It is not

clear what caused the variation around 700nm. We suspect it was due to drift in

the spectroradiometer’s sensors during the course of the experiment.

Given this model, we must predict weights of these basis functions (ws from
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Equation 2.4). We do this by training three regression-tree based models, one

for each parameter, using the 2-dimensional chromaticity coordinates from the

images previously registered by re-lighting. We trained this estimation model

12 samples, the same value which produced reasonable results for the lighting

estimation. The RMS residual error of this prediction is shown in Figure 2.9(a).

We can see that there is no meaningful spatial or temporal pattern in the error,

suggesting the model captures most of the variation in the data. However, the

magnitude of the error is rather large and we see some rather significant outliers.

In comparison, the best possible values for ws produce a mean RMS residual

error of 0.0214, approximately 20 times smaller than the error produced by the

spectral reflectance estimation model.

To better understand this error we plot the measured and estimated spectral

reflectance for the largest outlier, sample 4 occurring at 60 minutes. As we can

see in Figure 2.9(b), the fit is quite good. The vast majority of the error comes

from wavelengths greater than 700nm. This error is somewhat expected since it

is present in the model’s basis functions as well as the original measurements.

However, without evaluating the effect on the estimation of the target signal

(CO2 uptake), it is impossible to tell if this prediction accuracy is sufficient for

our application. As suggested earlier, the error of this prediction can be reduced

by improving the accuracy of the re-lighting transform.

A complete treatment of relative spectral reflectance estimation for use with

natural imagery can be found in our prior work [43]. Since, we are unable to

collect relative spectral reflectance data in the lab because it would disturb the

measurement of the target signals, we have no ground truth data with which to

train our model. We continue our analysis by considering the prediction of CO2

directly from image features.
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Feature x y Approx. Wavelength (nm)

363 0.34375 0.375 555

364 0.375 0.375 580

395 0.34375 0.40625 545

428 0.375 0.4375 545

525 0.40625 0.53125 540

Table 2.1: The top five chromaticity features selected for modeling CO2 along with their chro-
maticity coordinates and approximate wavelengths.

Using Image Features Directly

Instead of modeling the target signal indirectly through relative spectral re-

flectance, we choose to model the target signal directly from chromaticity fea-

tures of the images. Similar to lighting estimation, we discretized the x and y

dimensions chromaticity space into 32 × 32 buckets, each bucket representing a

0.031-unit square area of chromaticity space. The value at each of these chro-

maticity buckets represents the percentage of pixels whose chromaticity falls into

this bucket. We then clean the data by squashing buckets containing less than

1% of the pixels to zero and only considering a single significant figure after the

decimal place. This has the effect of reducing the number of anomalies present

that would otherwise distract the regression algorithm.

We then trained a regression tree based model on the chromaticity features,

predicting CO2 as the response. Though this model performed poorly, it sug-

gested that only a small number of chromaticity features, shown in Table 2.1, sig-

nificantly contributed to the model. The wavelength value shown is derived from

the point on the gamut boundary nearest to each feature bucket. The location of

44



●
●●●

●●
●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●
●

●
●●

●

●

●
●
●

●●
●

●

●

● ●●

●

●

●

●

●
●

●

●

●
●

●

●

●●●●●●● ●●●● ●

−2 −1 0 1 2

−
0.

5
0.

0
0.

5
1.

0

Theoretical Quantiles

S
am

pl
e 

Q
ua

nt
ile

s

(a) Regression Tree-based Model Residuals
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(b) MARS-based Model Residuals

Figure 2.11: The QQ-plot of the Regression Tree-base model’s residuals show a significant de-
flection from normal, indicating a poor fit (a). In contrast, the QQ-plot of the
PolyMARS-based model’s residuals show alignment with normal, (b).
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Figure 2.10: The features selected by our
regression tree-based model.

these features relative to the xy gamut is

shown in Figure 2.10. Training a Poly-

MARS model on the same input data

produced either identical features or fea-

tures immediately adjacent in chromatic-

ity space.

To incorporate the memory present in

this process, we created 10 temporally

shifted versions of each of the features

identified in Table 2.1; since data points were separated by 15 minutes, this

resulted in a maximum temporal shift of 150 minutes. Building a new model

based on these features reduced the model’s average RMS error from 0.355 ppm

to 0.303 ppm. Using a regression tree is suboptimal since the data are contin-
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uous, and the regression tree can only predict discrete values. This is shown

most obviously by the large tail in the QQ-plot of the regression tree’s residuals,

Figure 2.11(a). After replacing our model with PolyMARS, we further reduced

the average RMS error to 0.279 ppm and reduced the heavy tails on the fit’s

residuals, Figure 2.11(b).

Feature Temporal Shift

428 none

428 -120 min

364 -120 min

525 -15 min

364 -90 min

Table 2.2: The final features chosen for
modeling CO2 and their asso-
ciated temporal shift. Inter-
estingly, only three unique fea-
tures contributed to the final
model.

The PolyMARS-based model chose

the features shown in Table 2.2; these

features are shown in the order they are

chosen by the model. This order roughly

correlates to the significance of each fea-

ture’s contribution to the model. We no-

tice that all chosen features fall within

545nm - 580nm; this nicely matches with

the spectral absorption of Chlorophyll B

show in Figure 2.12(a). The biology of

the moss suggests that the amount of active Chlorophyll A and B present in the

plant should correlate with its CO2 uptake [85]. As a result, we believe that this

model has captured the essence of the moss’ behavior.

The CO2 uptake values predicted by our model on testing data is shown in

Figure 2.12(b). The prediction (red) closely follows the ground truth data (black);

since we are using PolyMARS, we are able to produce much smoother results in

comparison to the discrete values produced by a regression tree based model.

There are two regions where we have prediction errors: at the end of the first

light period (around 300 minutes), and the end of the final light period. The

initial errors are caused by slight variations in the color of the different moss as

the are wet the first time; some take on a slightly deeper green. These variations
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(a) Chlorophyll Spectral Absorption
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(b) Example Prediction

Figure 2.12: The absorption spectra of Chlorophyll A and B [109] shown in (a) nicely aligns
with the features chosen in our model; that is, our model chooses features that
represent wavelengths that Chlorophyll reflects. An example CO2 prediction on
testing data is shown in (b).

are naturally damped as the layer of soil below the moss absorbs the water and

slowly rehydrates the moss during the second and third light periods. When

the moss is nearly dry and preparing for drought, it ceases to change color even

though it is still emitting CO2. Thus, we are unable to identify this state using

color alone.

Finally we test our entire procedure, end-to-end, under simulated natural

lighting. Each lab experiment was conducted over the course of several days.

We take the gathered imagery and transform it using Equation 2.11, applying

a sequence of actual natural illuminants measured in our field experiment. To

account for the error introduced by our illumination model, we apply Gaussian

noise of varying intensity to evaluate it’s effect our CO2 prediction accuracy.

Perturbing the spectra using Gaussian noise is a reasonable reflection of reality

since atmospheric effects will result in such noise as measured by Judd et. al.
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(a) Simulated Lighting Error
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Figure 2.13: The RMS error measured when simulated lighting and images are perturbed by
Gaussian noise of varying intensity, (a). The contribution of the lighting and
correlated error to the total error is shown in (b). The dashed line in both figures
is the error bound given by domain scientists.

[49]. Still the effect of this lighting change is nearly invertible since we are using

an idealized lighting transformation. To add additional error, we compute the

feature covariance matrix of moss in each dataset emitting or absorbing a similar

amount of CO2. We then apply correlated noise based on this matrix to perturb

the data in a non-invertible fashion likely to be present in field imagery. Finally,

following the procedure we’ve defined: we estimate the lighting, re-light the scene

to be under a fixed illuminant (here D65), and estimate the CO2 using a model

trained on the lab data and imagery.

As we increase the amount of noise applied to the lighting and imagery, we

start to see our procedure break down and the RMS error of our model rise,

Figure 2.13(a). These issues stem from three places: incorrectly predicting the

scene’s illumination, poorly inverting the altered lighting that is present, and

the model poorly compensating for the slightly altered appearance of the moss.
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The least significant of these issues is the effect of correlated noise as seen in

Figure 2.13(b). Since this the model was trained on five replicates, we expect

that most of the variation in appearance is captured. As a result, we see that

the error due to correlated noise alone is consistently less than error caused by

lighting effects.

The more significant source of error was the noise applied to the incident illu-

mination. As the magnitude of the lighting error increased, the more frequently

we mispredicted the scene’s illumination. Even when we did correctly predict the

illumination, we would correct it with the model’s illuminant that did not contain

the added noise. Regardless of the cause, the error is caused by poor re-lighting

resulted in a slight shift in chromaticity space of the extracted features, adversely

effecting CO2 prediction of our model.

We expect that our daylight model may induce at most a 7% error into the

predicted scene lighting, as seen in Figure 2.4(b); recall, the SPD is normalized

to 100 at λ = 650, though it does not have mean 100. When we apply noise

resulting in 9% error, we are able to predict CO2 with an RMS error of 0.439

ppm, which is below the domain-scientist required 0.5 ppm.

2.6 Related Work

There are a number of fields that have done work related to our image-based

prediction of continuous signals. For the types of biological applications we con-

sider, much of the work has been from the fields of agricultural engineering and

environmental monitoring. Attempts to use satellite based remote imaging also

have many similar characteristics, though their field-of-view is much larger and

the signals they attempt to estimate are less directly tied to individual plant phe-
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nomena. Here, we discuss contributions from those communities that are relevant

to our work.

Agricultural Engineering

Our proposed procedure has many characteristics in common with research in

the agricultural engineering field. This research attempts to use images to mon-

itor crop health, increasing yield by detecting problems quickly. For example,

detecting weed growth in crop fields has long been a problem for the agriculture

industry. A review of recent literature [12] suggests that there has been a shift

from using remote imagers to in-situ imagers. For example, remote imagers, typ-

ically in aircraft, have success detected weeds when the patches are dense and

uniform in color, they have trouble detecting small patches because of their low

resolution. In contrast, in-situ mobile imaging devices have had more success de-

tecting smaller patches of weeds growing amongst the crops. Slaughter et. al. [96]

approaches this classification problem from first principles. Like our formulation,

they use the physical model of image formation in an attempt to build lighting

invariant color features. Additionally, they used shape and texture features as

suggested by their application.

Techniques for dealing with natural lighting conditions from a machine vision

perspective are discussed in a series of works by Marchant et al. [69] [68] [67].

Set in an agricultural context, they attempt to modify existing vision algorithms

to better distinguish soil from vegetation. Similar to our procedure, they choose

to use the distribution of sensor values as input to their model since the possi-

ble subjects have very different spectral reflectance characteristics. In their case,

the model was a binary classifier since they were interested in a binary signal.

They approximate the spectra of daylight using an idealized black-body radiator
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and approximate the spectral sensitivity of the camera sensors as impulse func-

tions. A transformation was constructed, based on a ratio of sensor responses and

other factors, which rendered their images sufficiently independent of changing

illumination. Finally, they showed that this transform effectively separated field

imagery of soil and vegetation. Unlike our goal, this and the previous system at-

tempt to build binary classifiers of the image’s subject. However, the techniques

they use are applicable to our process formulation.

Environmental Monitoring

The goal of our work is similar in to much of the research in the environmental

monitoring field. Unlike our work, however, typical research in that discipline

performs rudimentary analysis of the images, ignoring the physical models of

image formation. A representative work is the environmental monitoring system

described by Crimmins et. al. [22]. It attempts to measure relative vegetation

coverage by producing a “greenness” signal from a sequence of images. This

signal is simply computed using the difference between the mean value of the

color channels. They show that even this simple image feature tracks the increase

in plant coverage over a three month period relatively well. However, this feature

began to loose stability once the image became shaded by the canopy’s growth.

In fact, the system that inspired our work [36] used a similarly simple feature

(average red-to-green ratio) to predict moss CO2 uptake. However, they were only

able to accurately predict relatively large values of CO2 uptake. They posited

that for small values of the target signal, there was less variation in the image

and thus a simple average ratio was insufficient.

51



Remote Sensing

The remote sensing community approaches this sensing problem from a signal

processing perspective. Common practice in these works has been to devise an

image feature that is linearly related to the signal of interest. To some extent,

this is the inverse of the environmental monitoring field’s approach; instead of

hypothesizing a feature using domain knowledge and measuring the correlation,

they derive a feature which is defined to be well correlated. For example, the

Dark Green Color Index (DGCI) [50] attempts to measure the species and health

of commercial turf grass fields. The Damage Sensitive Spectral Index (DSSI) [73]

tries to measure the damage to a wheat crop caused by weather or insects. By far,

the most common feature is the Normalized Difference Vegetative Index (NDVI)

[89] and its two close derivatives, the Soil-Adjusted Vegetation Index (SAVI)

[41] and the Atmospherically Resistant Vegetation Index (ARVI) [51]. These

indexes attempt to measure how much live, green vegetation is present in an

image. Our work tries to strike a balance between the data-driven approach of the

remote sensing community and the theory-driven approach of the environmental

monitoring community. We do this by imparting structure to the procedure

rooted in theory while allowing the models to adapt to the data.

Similar hybrid approaches are seen in the remote sensing literature. For ex-

ample, the satellite-based Multiangle Imaging SpectoRadiometer (MISR) [61]

attempts to detect the presence of clouds and cloud thickness using visible light

and infrared imagery. They use image features based on radiance (the reflective

characteristic of the subject) because they know that there is a significant differ-

ence between in energy reflected by land and the energy reflected by clouds. More

recent analysis [94] of data produced by that satellite produced binary classifiers

based on SVM to identify features that were most useful when attempting to
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distinguish ice sheets from clouds; both of which have very similar radiance.

Like MISR, the river morphology measurement system developed by Legleiter

et. al. [57] takes a hybrid approach to feature selection. The purpose of this

system was to derive the depth of a river channel from visible-light imagery.

Informed by the application, they choose to extract the log-ratio of color band

pairs. These pairs were selected such that one band had much greater attenuation

in water than the other. As a result, the log-ratio of these values is sensitive to

the river’s depth and less effected by suspended sediment. A model, calibrated

against field measurements, was then derived by linearly transforming the log-

ratio.

Our work leverages the best that these distinct communities have to offer,

producing a image processing toolkit suitable for in-situ imagers. The features

we select are domain relevant but the phenomena are modeled using non-linear

techniques. The sensing system we propose takes advantage of inexpensive, read-

ily deployable, visible light sensors. Compared to satellite- or plane-based remote

imagers, they have much higher temporal and spatial resolution. Unlike the trend

in the agricultural engineering community, we believe that remote and in-situ im-

agery can easily work harmoniously to measure natural phenomena. For example,

a combined approach where data from a remote sensing applications can trigger

the deployment of localized in-situ imagers would be mutually beneficial. This

takes advantage of the significant strengths of each technology: the large coverage

area of remote imagers, and the higher spatial resolution of in-situ imagers.

53



2.7 Conclusion

Driven by a motivating application, we have developed a template procedure

for estimating a continuous ecologically-relevant signal, CO2 uptake from a moss

plant. At a high level, we compute the illumination present in the scene, we

then re-light the imagery to be under a reference illuminant, and compute the

target signal either by way of the subject’s relative spectral reflectance or directly

from features of the relit imagery. Though this process requires a number of

assumptions of the application and environment, we have shown them to be

both reasonable and common to many applications. The key innovation of this

procedure is the automatic detection and reversal of ambient illumination to

regularize the imagery for further processing. When evaluated under simulated

natural conditions, we have shown that we can estimate the CO2 uptake of the

moss plant with an error less than 0.5ppm, making these estimate useful to

domain scientists.
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CHAPTER 3

Predicting Discrete Signals

In this chapter we discuss the prediction of discrete signals from video of natural

scenes. We would like to detect the presence of somewhat rare, novel objects near

specific, user-defined regions of interest. We leverage the highly correlated nature

of temporally adjacent frames within the video sequence to both reinforce poten-

tial detections and discount potential mis-detections of novel objects. Sequences

of frames thought to contain such novel objects (the target) would then be pro-

vided to the domain scientist for further study. Such a system allows domain

scientists to analyze orders-of-magnitude more video data in this summarized

form as compared with unaided, human analysis of the complete video.

3.1 Introduction

In a general sense, we are attempting to perform anomaly detection [16] over

sequences of images. The obvious approach drawn from computer vision is object

detection. Object detection considers a single image, attempting to detect if a

specific object is present [81]. Simply performing object detection neglects two

key aspects of our problem: we are trying to detect novel object of any form, and

we are operating on video rather than unrelated still images. Though we are not

necessarily interested in the location of the target within a given frame or the

character of the target itself, we need a way to leverage the correlation between
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frames. Thus, we choose to model our approach after object tracking [112], using

techniques optimized for the specific application of interest.

The class of intended applications is characterized by novelty of the target

relative to the background and the expected motion of the target. A variety

of salient image features roughly correspond to object novelty; features such as

color, intensity, shape, texture, and movement. These features are borne from

human perception of novel objects present within cluttered scenes [45]. The

expected distribution of these feature values for the target and the background

helps define both which features are useful for discriminating the target from the

background, and whether our modeling efforts should be focused on the target or

the background. For the duration of this chapter, we focus on the requirements of

a specific application: pollinator visitation. For this application, we wish detect

bees as they visit an individual flower; we are not trying to detect the bee flying

through the scene, just its presence on the flower itself. Though we leverage

application specific characteristics to build our procedure, we argue that these

characteristics are common to a variety of biologically relevant applications.

We expect that the target is not a particularly novel object relative a cluttered

background; it has a poorly defined shape, elliptical from most orientations, and

has little defining color or texture. Thus, we are forced to introduce a region of

interest (ROI) defined by both it’s scientific interest and its ability to make the

target appear novel. For example, a bee does not present any novel features when

compared to the cluttered background of a bush, Figure 3.1(a). However, when

the bee approaches a flower, it stands out against the typically vivid colors of the

flower’s pedals, Figure 3.1(b). The ROI itself is expected to be easily identified

relative to the background; in this example the flower is clearly visible against the

cluttered natural background in Figure 3.1(a). Properly identifying the ROI has
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(a) Cluttered Scene (b) ROI with target present

Figure 3.1: Against a complex and cluttered background (a), even a human observer would
have trouble identifying the target. However, when restricting our view to only a
important region of interest (ROI) (b), the target stands out more visibly.

the side-effect of registering the image in the face of global scene motion relative

to the camera. Further, restricting our search to the ROI alone discards other

objects and motion that would only distract our automated detection.

Unfortunately, even after we restrict our search to the ROI, the target is

still particularly difficult to recognize because of its general lack of distinguishing

features. So, instead of simply using static visual ques present in a single frame,

we leverage the temporal continuity of the video sequence to identify the target

using both appearance and motion. The motion of the target within the scene is

expected to be erratic and very quick. In order to effectively capture it’s motion

globally within the scene would require a frame rate much faster than 30Hz.

However, when the target approaches the ROI, we expect it’s motion to become

far more predictable and slow significantly. This slower motion we expect to be

easily captured at 30Hz and below, speeds typically available in consumer-grade

video cameras today. In our application, the pollinator moves quickly throughout

the scene and isn’t easily tracked, even by humans. However, once on a flower,

the pollinator’s motion slows significantly.
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The choice of camera limits the features available for our analysis. For exam-

ple, it is difficult to capture smooth motion with less than a 30Hz frame rate, and

it is difficult to model texture at very low resolution. We require that the camera

used is able to capture frames with at least 640x480 resolution at a minimum of

1Hz, preferably 20Hz or 30Hz. The target, when present, should occupy approxi-

mately 1% of the frame or more. Thus, the target should be at least 40x40 pixels

in size.

For these applications, we focus on tracking single targets as they move about

near the ROI. Though this approach can be extended to multiple targets, see

Section 3.3.3, we choose to avoid the added complexity since such situations are

atypical for these applications. Additionally, we anticipate only offline processing

of these data; the data is collected in the field and analyzed after the fact, there

is no attempt made to feedback incremental results into the sensing system itself.

We consider an online system, allowing for camera actuation based feedback, in

Chapter 4.

The class of sensing application we describe encompasses a wide range of

biologically relevant studies. This work is immediately applicable to the study

of the pollination behavior of bees in the presence of invasive plant species [5] or

the study of weed seed predation by insects [75]. In these cases, an obvious ROI

(here a flower or weed seed) serves to localize our search for an elusive target.

Even still, this approach is appropriate for detecting novel objects or motion

near any automatically extracted ROI; potential applications range from sensing

movements of individually tagged fluorescing bacterial cells [91] or the detection

of near-microscopic marine animals [24] to the behavioral monitoring of nocturnal

fish [82] or the detection of large, migratory, wild animals [18]. In all of these

cases, the target itself is sufficiently novel compared to the background that an
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ROI is not needed to limit our search.

The rest of this chapter is structured as follows: Section 3.2 discusses the

specific motivating application we will consider throughout our analysis. An

overview of the proposed procedure is outlined in Section 3.3 and described in

the following sections. A thorough evaluation of this procedure in the context of

the specific application is presented in Section 3.4. Related work is discussed in

Section 3.5, and conclusions are drawn in Section 3.6.

3.2 Motivating Application

The study of pollinators behavior and its effect on the local flora is a multi-

disciplinary field spanning botany, horticulture, entomology, and ecology. At the

core of many studies in this field is the measurement of flower occupancy by

pollinators [9]. Typically, scientists are interested in the number, duration, and

species of pollinator visitations to a given species of flower in the presence of

other flower species. From these data they can begin to draw conclusions about

the health of both the plant and pollinator populations in a given ecosystem [5].

For example, the effect of invasive plant species on the mutualistic networks

that are extremely important to the diversity and stability of the plant and

pollinator communities is studied by Bartomeus et.al. [5]. They seek to attribute

diminished pollinator visitation to native plant species to the introduction of

various invasive plants. Cooley et.al. [20] study whether flower color and shape

diversification, and subsequent potential for pollinator preference, may lead to

reproductive isolation among morphs of a particular flower species.

Both of these studies require the long-term collection of pollinator occupancy

data. These studies define pollinator visitation to be one or more pollinators
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Figure 3.2: The process we propose consists of the three logical parts depicted here: detecting
and localizing the region of interest (ROI), detecting and localizing the target oc-
cluding the ROI, and tracking the target across multiple sequential frames using
some set of features F (x) derived from imagex. The output of this procedure is a
set of contiguous image sequences believed to contain the target of interest.

present on a particular flower. Currently, these data are acquired manually by

having a human monitor the flower, watching for pollinator visitations [20]. This

presents significant spatial and temporal limitations on data collection. The

collection procedure outlined in these representative studies suggest that data

can only be collected for 30 minutes durations and can only cover a small area

much less than 1m2. The procedure we propose can extend the duration of data

collection for a small cluster of near-by flowers to the entirety of a day. We

consider increasing the spatial extent of the data collection in Chapter 4.

3.3 Procedure

We propose a multi-stage procedure to process the incoming video imagery and

produce occupancy data that can be consumed by scientists. This procedure is

designed to be tailored to the specific application of interest, though the procedure

itself is general. Further, we attempt to minimize the user input required to

extract the biological signal of interest.

The procedure, as depicted in Figure 3.2, roughly consists of three indepen-

dent pieces. For each frame, we must first automatically localize the ROI specified

by the user. This effectively discards a large fraction of each frame that is unin-
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teresting, by definition, and would only serve to confuse further processing. Next,

we detect and localize the target as it occludes the ROI. We consider both model-

ing the target itself, by way of its visual appearance or its motion, and modeling

the background, looking for occlusions that imply a foreground object. Finally,

using the likelihood and location of a potential match produced by the target de-

tection, we follow the target’s motion over time looking for discontinuities since

the target’s motion is expected to be smooth; this leverages the inherent temporal

correlation between frames to discard false detections.

This particular segmentation of the problem is suggested by computer vision

literature. Detecting the ROI and limiting our further processing to that region

is a form of translational image registration [35]. Registration is a clearly sep-

arable operation that serves to provide stable data to the following operations;

forcing subsequent stages to detect and compensate for such motion would only

serve to further complicate their requirements. Separating target detection from

target tracking is also a common approach in the literature [112]. Many tracking

algorithms simply presuppose that target locations are known [106] while others

suggest specific, but independent, detection methods [7].

Though separate in principle, these stages clearly have significant interaction;

later stages must compensate for any errors made in earlier stages. Many statis-

tical approaches exist to model these interactions globally using constructs like

joint likelihood filters, joint probabilistic data association, or multiple hypothesis

filters [95]. These approaches attempt to simultaneously detect and track objects,

effectively feeding back trajectory information to aid detection; more details can

be found in Section 3.5. We assert that such complex approaches are unnecessary

for our application. Instead, we propose that incremental improvement of each

stage with minimal compensation effort in following stages produces sufficiently
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accurate results for our applications, as shown in Section 3.4.

Humans are particularly adept at detecting specific interesting objects and

noticing motion in a complex scene. Though computer vision attempts to mimic

the abilities of human vision, it’s capabilities are still far from comparable. Thus,

we attempt to define heuristics of potential applications required for successful

detection and tracking. First, the ROI should be obvious to an untrained human

when only given approximately 250ms to view the scene, and it should occupy

at least a 150px square area (approximately 10% of a 640x480 image). Second,

the target should be obvious to an untrained human when viewing frames of the

ROI progressing at 1Hz. Finally, the data should be captured at a minimum of

1Hz for background modeling and a minimum of 20Hz is required for foreground

modeling.

The solution we propose is very similar to those in the literature. What

differentiates our approach is its simplicity, ease of debugging failures, and is

application aware formulation. Our procedure is designed to solve a specific

class of biologically relevant data collection problems, allowing it to leverage

application specific characteristics to improve performance.

3.3.1 Detect and Localize the Region of Interest

When we consider the natural imagery depicted in Figure 3.3, it is clear that

spotting a bee against the cluttered background is a near impossible challenge.

However, spotting a bee against the brightly colored flower is more feasible. This

foreground object, which we define to be the region of interest (ROI), is character-

ized by it’s distinct visual difference from the background clutter and movement

that is unrelated to the final detection problem (here locating a pollinator). Fur-

ther, we expect that the ROI is present in all frames of the video sequences. Our
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Figure 3.3: We define the flower to be the region of interest. Considering only this object allows
us discard a significant fraction of the frame that we deem to be uninteresting.
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(a) Frame A (b) Frame B (c) Frame C

Figure 3.4: Three near-by frames in the image sequence depict the significant motion of the
region of interest (the flower).

goal is to automatically detect, localize, and crop this ROI in every frame in

the image sequence. This operation allows us to discard a large fraction of the

image would only serve to confound our later detection problem. Finally, it has

the added benefit of reducing the computational expense of future analysis by

significantly reducing the size of the image.

Figure 3.4 illustrates the motion of the ROI over within a single image se-

quence; significant foreground and background motion is present. The foreground

motion can be characterized as translation within the 2D viewing plane, thus we

consider this to be analogous to translational registration [35]; we are simply

attempting to find the appropriate translation of the ROI that results in sequen-

tial images being aligned and cropped appropriately. The magnitude of spatial

displacement of the ROI between adjacent frames is modeled as a Normal distri-

bution (Equation 3.1).

xt+1 = N(µ = 0, σx) + xt

yt+1 = N(µ = 0, σy) + yt (3.1)

Using this formulation, we choose to apply a technique called template match-

ing [13] to detect and localize the ROI based on a template image representing

the ROI. In principle, we can use this formulation to decrease the computational
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complexity of template matching by a constant factor in the average case. How-

ever, worst case complexity would be unchanged. Instead, we use this formulation

to rank potential matches found in the example image. Potential ROI matches

closer to the location of ROI in the previous frame are preferred over more distant

potential matches. This helps us avoid transient aberrations that may otherwise

reduce our accuracy. A similar formulation is used to track the foreground target

in Section 3.3.3.

Though not required for the considered applications, we could apply the

Hough transform [1] or a Scale-Invariant Feature Transform (SIFT) [62] to this

template image to account for 2D in-plane rotation. As its name implies, SIFT

can also tolerate changes in scale, and using more template images containing

the ROI from various poses, it can also account for 3D out-of-plane rotation.

The user typically acquires the template image by cropping the ROI from the

first frame of the image sequence. Given this template image, which is expected

to be a sub-image fully or partially contained within a given example image,

the template matching algorithm computes some similarity measure between the

template and the example image for for all possible translations of the template

image depicted in Figure 3.5(a). The similarity measure, parameterized by the

location of the template image relative to the example image, is computed for

all aligned pixels and applied to each color channel. The maximum likelihood

estimate for the correct alignment of template and example image is located at

point of maximum similarity.

The template is never exactly, pixel for pixel, present in the example image.

The example image always includes some distortion due to lighting or lens effects.

Instead, we model the instance of the template present in the image as 0-mean
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(a) Template Matching (b) Example Match

Figure 3.5: A graphical depiction of template matching is shown in (a). Here the red rectangle
represents the template, and the black rectangle (size RxC with B color bands)
represents the example image. The image is padded with empty pixels so that all
possible template translation can be attempted (Figure from [84]). An example of
a template matched against an example image plotted as a heat map is illustrated
in (b); darker implies more similar, and the dark spot in the upper right represents
the flower in the image.

Gaussian noise added to the template (Equation 3.2).

TI(x, y) = N(µ, σ) + T (x, y) (3.2)

We expect the similarity measure, or match value, to have two distinct regimes

corresponding to complete mis-alignment and near-alignment. When there is

no alignment, we expect the match value to be small, implying dissimilarity.

This can be seen in the random fluctuations in the similarity metric depicted in

Figure 3.5(b). Once the template is nearly aligned, we expect the match value to

be large, implying similarity. It is important to note that we can only consider

this similarity metric to imply likelihood when the template is nearly aligned

[13]. When the template is sufficiently novel in comparison to the majority of the

example image, simple thresholding can differentiate these two regimes.

The simplest implementation of template matching uses convolution. By defi-
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nition, this implies that the similarity measure is the inner product, or unnormal-

ized cross-correlation, of the color values at corresponding pixels (Equation 3.3).

The best template alignment θ̂ is located at maximum value of S (Equation 3.4).

S = T ∗ I

S(x′, y′) =
∑
x′,y′

T (x′, y′) · I(x+ x′, y + y′) (3.3)

θ̂ = argmax
x,y

S(x, y) (3.4)

Template matching using convolution can be efficiently implemented using

Fast Fourier Transforms as shown in Equation 3.5 [74].

S = F−1(F(T ) · F(I)) (3.5)

This process is performed on each color channel individually and summed. The

main draw back of this approach is the fact that matches are not normalized. As

a result, variation in image intensity significantly affects the match value.

Obvious alternatives to using unnormalized cross-correlation as a similarity

measure are normalized cross-correlation (Equation 3.6)

S(x, y) =

∑
x′,y′ T (x′, y′) · I(x+ x′, y + y′)√∑

x′,y′ T (x′, y′) ·
∑

x′,y′ I(x+ x′, y + y′)
(3.6)

and normalized Euclidean (L2) distance (Equation 3.7).

S(x, y) =

∑
x′,y′(T (x′, y′)− I(x+ x′, y + y′))2√∑

x′,y′ T (x′, y′)2 ·
∑

x′,y′ I(x+ x′, y + y′)2
(3.7)

Normalized cross-correlation can compensate for intensity changes in the exam-

ple image. Having a cross-correlation term in addition to L1-distance, using Eu-

clidean distance to measure similarity can compensate for both intensity changes

and color shifts. Both of these similarity measures can be implemented nearly as

efficiently as Fast Fourier Transforms [58].
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3.3.2 Detect and Localize the Target

After the ROI has been localized, we must focus on detecting the target of interest

within the identified region. There are a variety of potential methods for detecting

and localizing the target; for example, we can: model the target directly, search

for novel motion within the region, or model the background identifying non-

background objects as the foreground target. Regardless of approach, our goal

is to produce the likelihood and (x, y) coordinates of the single most probable

possible match. Recall, the input to this stage is the localized ROI and the output

match for a sequences of frames will be analyzed by the tracking phase to extract

sequences containing the target (Figure 3.2).

Model the Foreground

The direct approach is to model the target object in question. However, we

cannot assume that defining features for the targets of interest are available for

required the class of applications we consider, in this case bees (see Figure 3.6).

For example, bees have minimal novelty in texture, color, or shape. Worse, there

are many other object in the background clutter surrounding the ROI that look

quite similar to the target itself. For example, a leaf in partial shadow can have

a very similar appearance to the bee itself. Thus, directly using an approach like

template matching is bound to fail. Even more complex approaches are foiled by

the lack of distinct features.

Search for Novel Motion

Instead of directly modeling the foreground, we can apply an algorithm like opti-

cal flow [6] to identify motion vectors within the scene. With these motion vectors
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Figure 3.6: Four frames containing a bee perched on the region of interest. They are generally
uniform in color and texture. They have multiple possible poses, though all are
conical in nature.

in hand, we can identify motion that is counter to the global or local average di-

rection and magnitude of motion. There are a variety of optical flow algorithm

present in computer vision literature; we chose to use the Lukas-Kanade method

[63] because of its assumption of locally consistent flow and general popularity

within the field of computer vision.

The algorithm progresses by first choosing a set of features from pairs of

temporally adjacent images and the solving an overdetermined system of linear

equations defining their potential motion. Typically, the image features are cho-

sen by finding corners in the image after edge detection has been performed [6].

Then, various features are discarded based on their novelty and the density of

features present in a given region; this helps improve feature coverage of the im-

age while limiting the total number of features tracked. Finally, the features are

efficiently matched conditioned by similarity and locality constraints [10].

To use this approach requires relatively high frame-rate data, greater than

20Hz, so that frame-to-frame displacement of the target is small. This require-

ment stems from locality of motion constraints within the definition of the optical

flow algorithm. In order to improve accuracy and robustness, most optical flow

algorithms prefer motion vectors that result in local, relatively small magnitude,

motion vectors rather than larger magnitude motion vectors [64]. If the frame
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(a) (b) (c)

Figure 3.7: Three frames from a 20Hz video with optical flow vectors overlaid. (a) flow vectors
associated with feature on the bee itself appear to have novel motion relative to
the background. (b) background flow vectors have little globally directed motion,
so identifying novel motion would be difficult. (c) no features local to the bee were
chosen by the feature selection algorithm.

rate were lower, the distance moved by the subject would produce motion vectors

whose magnitude would be too large to correctly identify under these constraints.

Further, optical flow is somewhat susceptible to movement of the camera. Though

this movement can be incorporated into model of global or local average motion,

the magnitude of the motion can drown out the relatively small motion expected

of the target.

Using this approach provided mixed results for our data. In Figure 3.7(a)

we can see that many features are chosen on the bee, and they appear to be

novel relative to the generally left-oriented motion of the rest of the frame. How-

ever, there are a few important failure modes: multiple regions of novel motion,

poorly defined global or local motion, and missing target-related motion. In Fig-

ure 3.7(b), the general motion is somewhat poorly defined, but still, the target’s

motion is somewhat unique. However, there is also another region of unique mo-

tion to the left of the target. Finally, in Figure 3.7(c), no features of the target

itself were tracked, resulting in misidentification of novel motion; allowing more

features to be tracked in this instance only served to confound the direction of
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global motion.

Model the Background

The final method models the background and assumes that any occlusions are

interesting foreground objects. There are a variety of background subtraction

algorithms present in the literature. We chose to use the algorithm presented

by Ko et. al. [54] because it explicitly takes into account so-called camouflaged

foreground objects, those whose color distributions appear to be similar to that

of the background.

The background is modeled as a set of color histograms pij(x), each repre-

senting a square region of the image of size 4c2 centered around the pixel located

at the ith row and jth column of the image with value x ∈ R3. The same im-

age patch from T frames are combined into the final estimate of the background

histogram for the given patch (Equation 3.8). The feature vector x, which rep-

resents the color 3-tuple at a given pixel, is quantized to better approximate the

true density.

pij(x) =
1

|S|
∑
s∈S

δ(s− x)

S = xt(a, b) | |a− i| < c, |b− j| < c, 0 ≤ t ≤ T (3.8)

Using all spatially local pixels in the surrounding region helps to make the

background model resilient to movement in the background itself. Leveraging

the temporal extent of the dataset helps tolerate changes in the background over

time caused by changing lighting or other natural effects. We chose T images

randomly sampled from the image sequence, without knowledge of the target’s

presence. This provides a more representative sample of possible backgrounds in

comparison to T sequential images.
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Figure 3.8: Background subtraction can easily model the background in this image sequence
since it is relatively stable and the foreground object is sufficiently novel in com-
parison. The target seen in an image from the sequence (left) is easily visible in the
difference image (right).

Simpler background subtraction algorithms attempt to classify each pixel in

a test image against the background distribution to determine membership [25].

To deal with camouflaged targets, Ko et. al. compare the histograms of image

patches in the test image, qij(x), to those of the background model, pij(x), using

the Bhattacharyya distance [8] (Equation 3.9). The distance, d, falls in the range

[0, 1] where larger values imply greater similarity.

d =

∫
X

√
pij(x) · qij(x)dx (3.9)

The result of performing background subtraction is a difference image, where

each gray scale pixel in the image represents the Bhattacharyya distance be-

tween the region about that pixel and the corresponding region in the background

model. In some cases where the background is sufficiently simple, the target im-

mediately stands out against the background, as seen in Figure 3.8. In these

cases, a simple threshold for the distance and blob detection will easily detect

and localize the target.

However, in most cases with cluttered natural scenery as the background,

natural change in the background’s appearance creates significant noise in the
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Figure 3.9: Background subtraction has more difficulty modeling cluttered natural scenery
(left) where light flecks and other transient effects cause increased noise in the
difference image (right). Thus, we use template matching to identify the target in
the difference image (red square).

difference image (Figure 3.9). In these cases, such simplistic approaches will

find many targets resulting from transient aberrations. Instead, we again use

template matching to detect regions of the appropriate intensity and shape. The

user defines a single template by selecting the appropriate region of a difference

image that contains the target, in much the same way that the ROI is identified.

The single best match value found by template matching along with its (x, y)

coordinates are emitted to the next stage that tracks these potential targets over

time. It is important to note that no attempt is made to classify if a given match

is in fact a foreground object or a background aberration. False positives are

identified and handled appropriately during tracking.

3.3.3 Track the Target over Time

With the potential target localized, we focus on separating the matches that are

in fact representative of the target’s presence from those that are simply noise
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Figure 3.10: Distribution of match values when target is present and absent. The two distri-
butions overlap significantly, foiling any naive classification based on match value
alone.

found in the difference image. Our goal is to produce a set of disjoint image

subsequences that where the target is present within the ROI.

This simplest approach would be to build a binary classifier to distinguish

between target and not-target using the match value. Such a classifier, whether

built by SVM [105] or a simpler technique like decision trees [11], would simply

try to separate the classes by some sort of boundary in feature space. When

the background model is accurate and there is minimal background motion, such

classification is sufficient. Unfortunately, as the background model begins to

break down in the presence of significant background motion, the distribution

of match values is not separable as seen in Figure 3.10. Any attempt to build

a classifier around this feature will either render many false positives or false

negatives if it is tuned for recall or precision respectively.
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To surmount this difficulty, we leverage the fact that frames are not indepen-

dent, but are temporally correlated. We assume that motion of the target follows

some simple physical process once it enters the ROI. That is, its motion must be

smooth in time and space; it cannot be erratic. In our application, we expect the

bee to land on the flower and proceeds to walk around. If we capture imagery of

this motion with sufficient sampling frequency, we expect it to be smooth1. Since

we have no a priori knowledge of the process, we simply model the displacement

of the target frame-to-frame as a normal distribution (Equation 3.10).

xi+1 = N(µ = 0, σx) + xi

yi+1 = N(µ = 0, σy) + yi (3.10)

This approach is quite similar to object tracking when treating the object

being tracked as a single point [112]. In our instantiation of object tracking, we

only consider object translation in the 2D viewing plane. We expect that the

detection algorithm to compensate for rotation and deformation of the target,

correctly detecting and localizing the target if the target is in fact present in the

frame. When no target is present, its behavior is undefined, and it may emit

random values.

Recall, the features emitted from object detection for the ith image are the

match value mi and the match location li. As noted above, we model the de-

flection of the target between frames as a normal random variable and compute

σx and σy directly using maximum likelihood estimation. We model the match

value when the target is present as a Gamma distribution Γ, because of its heavy

tail, and directly compute its α and β parameters using maximum likelihood

estimation.

1Section 3.4.3 shows that a frame-rate of 1Hz is sufficient for the target’s motion in our
application to appear smooth
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We now try to find all contiguous sequences of images Si from the ordered

set of frames F , such that Si ∩ Sj = φ ∀ i 6= j, where Si obeys the following

constraints:

1

|Si|
∑
s∈Si

ms < 90th percentile(Γ)

max(ms)∀s ∈ Si < 99th percentile(Γ)

1

|Si|
∑
s∈Si

‖ls − ls−1‖ < 90th percentile(N)

max(‖ls − ls−1‖)∀s ∈ Si < 99th percentile(N) (3.11)

These constraints are intentionally set conservatively so that our output will

be tuned for recall rather than precision. We make this trade-off since domain

scientists would rather the results contain false positives, which they can quickly

ignore upon visual inspection, instead of incorrectly omitting false negatives. An

optimal solution for this global constraint satisfaction problem is possible, but it

is polynomial in complexity since all possible contiguous subsequences must be

considered.

Instead, we attempt to greedily grow sequences around seed frames where

ms < median(Γ). We set the seed constraint such that at least one frame from

each sequence is represented. Though this will likely identify frames that do

not actually contain the target, we prefer recall. This approach of choosing

seed frames is a departure from traditional object tracking formulations. Most

object tracking algorithms expect that at least one frame is labeled with the

correct location of the object [112] or that optical flow can reveal the initial

correspondence between the first two frames [87]. Instead, we approximate this

knowledge with seed frames and compensate for false positives since we cannot

expect to have such information.
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Once seed frames are chosen, the sequence is grown one frame at a time

subject to the constraints; the next frame to consider alternates between the

frame temporally before the start of the sequence and the frame just after the

end of the sequence. Sequences are grown until no frames can be added without

breaking the constraints. Since this algorithm is prone to prematurely ending

sequences because of outliers in the detection output (detection errors), we merge

sequences that are separated by less than τs seconds. To reduce false positives

introduced by invalid seeds, we drop sequences lasting less than τd seconds. For

our application, we choose τs = 1 seconds to allow for one frame detection errors

at 1Hz and τd = 2 seconds because the minimum interesting dwell time of a

pollinator is 2 seconds [9].

This formulation is an extension of previous work by Sethi et. al. [92] and

Rangarajan et. al. [87]. Sethi et. al. introduce a smoothness of motion constraint

that they model in terms of estimated inertia of the tracked object. Rangarajan

et. al. further impose a penalty based on proximal uniformity, asserting that

the target shouldn’t move too far in a short period of time (given sufficiently

high sampling rate) in addition to having smooth motion. In both formulations,

detection is considered separately from tracking, where the detected object is

characterized as a point only defined by its (x, y) coordinates. Both propose

greedy algorithms for their respective constraint satisfaction problems.

3.3.4 Considering Multiple Potential Targets

The approach described here could be extended to consider multiple potential

targets, essentially allowing more information to pass from object detection to

object tracking. We modify the detection algorithm to emit all targets within five

percent of the best match. The locations of these matches are then clustered and
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one target from each cluster is passed to the tracking algorithm. Like optical flow

feature selection, we prune potential matches, only allowing K matches within

a radius R. For our applications we are seeking clusters that are about twice

as large as the target itself; so, for a 40px square target, we see clusters with

R = 40px. From each of these clusters we select the most likely target ordered

by match values.

The tracking algorithm could then be modified to use these extra data to

account for detection failures, choosing only one detected target from each frame.

We apply the same constraints as defined by Equation 3.11. However, instead of

only considering the single match provided by the detection algorithm, we greedily

choose the match that minimizes these constraints. This approach attempts to

correct for oscillations in the detection algorithm when two or more nearly equally

likely targets are present. We show through evaluation that this modification

is not required to achieve sufficient accuracy. Still, we intend to peruse this

modification in future work.

Alternatively, we can relax the single target constraint and consider each

potential detection as a target and track each over time subject to our existing

formulation; a similar approach is taken by Shafique et. al. [93] where they

model the point targets as nodes in a digraph and attempt to find the minimal

paths between frames subject to constraints. However, the class of applications we

consider are only interested in target presence rather than exact count or quantity

of targets present at once. As a result, we ignore multiple target tracking for the

purposes of this work, deferring its consideration to future work.
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3.3.5 Generalizability

During the course of our procedure description, we have assumed certain charac-

teristics of the application and shown why they are reasonable when considering

pollinator visitation. These assertions primarily concerned properties of the tar-

get (both is appearance and its motion) and properties of the region of interest.

The assumptions that we made about the target necessitated the introduc-

tion of a region of interest. Specifically, we assert that the target is not novel

compared to a cluttered natural background and that its motion is quick and er-

ratic. This is clearly true of insects, but is not necessarily true of larger animals,

like deer, or simpler natural background, like under water. In these cases, slight

simplifications can be applied to our approach. In both cases we can remove

intermediate registration provided by ROI detection and localization, modeling

the target directly for obvious targets, or modeling the background directly for

simpler backgrounds. However, the ROI may still be of use if has an affect on the

phenomena. In the case of pollinators, we assert that the ROI reduces complex,

erratic movement of the target to a simple predictable motion. We believe this to

be true for many biologically relevant studies like the study of foraging behavior

in black bears [71] where they authors tracked the bear’s foraging on human in

developed areas. Though the bear don’t likely move that quickly in the open,

they certainly move much less when feeding.

With the need for an ROI established, we began to make certain assumptions

about its form. The most important characteristic of the ROI is its visibility

amongst the background clutter. This is almost certainly true in the general case,

be it a particular food containing bin or even a marine formation [24], regions

of interest are defined by their unique appearance relative to the background.

Further, we require that the ROI be present in all frames of the video sequence.
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Figure 3.11: The rig used to capture the IcePlant1 and IcePlant2 datasets in the Los Angeles
Basin.

In most cases, we feel that it is reasonable for camera system deployed to maintain

this invariant. In cases where the ROI has significant motion this assumption may

begin to break down. Finally, we assert that the ROI can be represented by a

single template image. When the ROI is fixed relative to the camera, this is likely

the case. If not, we believe that more complex modeling can replace our simple

template matching approach to identify the ROI in these scenes, though we leave

this to future work.

3.4 Evaluation

Biologists are interested in the pollination behavior of bees, specifically the quan-

tity and duration of visits to a particular flower [5]. For this application, the
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Data Set Frame Rate Duration Frames Targets Motion

IcePlant1 20Hz 5 min 6000 127 camera (small)

IcePlant2 20Hz 10 min 12000 904 camera (small)

Manzanita1 0.5Hz 10 min 350 15 wind (large)

Manzanita2 0.5Hz 30 min 1000 182 wind (large)

Manzanita3 0.5Hz 300 min 9000 0 wind (large)

Table 3.1: Details about the collected pollinator datasets. Targets refers to the number of
frames that contain the target foreground object.

region of interest is the flower itself and the target we are trying to track is the

bee, when present. As output, we would like to provide biologists with a sum-

mary of the pollinator events that took place over a given period of time. This

summary will include sequences of frames that contain the target, with the target

identified, as well as summary statistics like dwell time of the pollinator on the

flower.

To perform this evaluation, we collected a number of different datasets with a

variety of characteristics. Two datasets were collected in the Los Angeles Basin

of Aptenia cordifolia, a species of ice plant. These data were collected at 20Hz

for five and ten minutes (we will refer to these data as IcePlant1 and IcePlant2

respectively), see Figure 3.11. Another two datasets were collected at James

Reserve of Arctostaphylos pringlei, a species of Manzanita shrub. These data

were collected at 0.5Hz for 10 minutes, 30 minutes, and 5 hours (we will refer to

these data as Manzanita1, Manzanita2, Manzanita3 respectively). Details about

these datasets can be found in Table 3.1. All imagery were collected with 640x480

resolution. We limit our evaluation to these temporally short datasets since we

require a human to manually inspect all frames and label ground truth. However,

the procedure we have developed can run for much longer.
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Figure 3.12: The illumination present throughout the Manzanita datasets varied significantly.
Here we show the visual difference between direct (left) and indirect (right) illu-
mination.

The IcePlant datasets had somewhat limited background motion due to the

rigid nature of the plant. Most of the motion in these datasets was induced by

camera instability during collection. In contrast, the Manzanita datasets had

significant natural background motion due to wind; the same wind also has some

effect on the mounted camera. The foreground in the Manzanita datasets also saw

significant changes in illumination (see Figure 3.12), oscillating between direct

and indirect sunlight somewhat randomly.

A pollinator was considered to be present if it occluded any part of the flower,

regardless if it was contained completely within the boundaries of the ROI. All

frames that contained a pollinator were labeled as such, though the exact location

of the pollinator was not computed. Recall, knowledge of the pollinator’s location

is not required by the domain scientists since they have plan to visually inspect

all output. Even though this information is computed as a byproduct during

detection and tracking, we don’t collect ground truth or evaluate our ability to
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localize the target since it is not of interest to the domain scientist.

3.4.1 Region of Interest Detection

When identifying the region of interest (ROI), our goal is to limit further com-

putation to the ROI alone. Practically, this requires cropping the input image to

the boundaries of the ROI. For this to be effective, the detected ROI must fully

contain the semantic ROI, in this case the flower. Thus, we define our criteria to

be:

Accuracy = 1− Misses

Total Frames
(3.12)

where a miss is a frame where the computed ROI does not contain the entirety

of the semantic ROI.

To obtain the template image for each dataset, we manually crop the ROI

from the first frame of the dataset. We evaluate the effectiveness of the various

similarity measures on each of the collected data sets in Table 3.2. First, we see

that IcePlant1 and IcePlant2 have very simple background that make template

Accuracy (Misses) IcePlant1 IcePlant2 Manzanita1 Manzanita2

Cross-Correlation 100% (0) 100% (0) 86.6% (47) 96.1% (42)

Normalized Cross-Corr 100% (0) 99.3% (2) 98.2% (6) 99.6% (4)

L2 Distance 100% (0) 100% (0) 98.2% (6) 99.8% (2)

Normalized L2 Distance 100% (0) 100% (0) 98.5% (5)a 99.9% (1)

a The ROI is either partially or completed out-of-frame in 4 frames.

Table 3.2: The accuracy of various distance metrics for each of the tested datasets is shown here
along with the absolute number of misses. We define a miss to be any localization
that does not completely contain the region of interest (ROI). Typical failure modes
result in partially cropped ROIs, which will result in poor performance later in the
process.
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Figure 3.13: Example frames illustrating the visual effect caused by the change in natural illu-
mination that occurs during the day. These images were captured at 2pm (left),
4pm (middle), and 6:30pm (right).

Hour 1 Hour 2 Hour 3 Hour 4 Hour 5

Accuracy (Misses) 100% (0) 100% (0) 98.8% (12)b 100% (0) 80% (200)

b The ROI is either partially or completed out-of-frame in 6 frames.

Table 3.3: The accuracy of computing the ROI in the presence of changing natural illumination
from 2pm until 7pm.

matching successful across the board. However, for the Manzanita datasets, we

see that the simplest approach, unnormalized cross-correlation, is not very effec-

tive. The best distance measure is shown to be normalized Euclidean distance.

To measure the resilience to changing lighting conditions, we captured a 5

hours dataset from James Reserve of the same Manzanita shrub, from 2pm to

7pm (dataset Manzanita3); example frames from this sequences can be seen in

Figure 3.13 and results in Table 3.3. During the first 4 hours of sampling, there

were only 12 misses, 6 of which were caused by the semantic ROI being out-of-

frame due to wind. Only after 6:30pm, when the sun was nearly down and the

frame nearly black, did we start to see a significant fraction of misses.

When operating on images with 640x480 resolution, our implementation of

template matching (based on OpenCV [80]) can process a single image in ap-

proximately 200ms on a 2.4GHz Intel Core 2 Duo. Though we don’t require this
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system to process data as fast as it is captured, this processing latency is more

than sufficient to process 1Hz data online.

3.4.2 Target Detection

The goal of the target detection algorithm is to correctly localize the target in each

frame. Given the way we have defined the algorithm, a potential target will be

found in each frame even if no target is present. Recall, we defer the separation of

invalid targets from from valid targets until we have temporal information during

tracking. Our detection algorithm requires us to train both a background model

and a template matching model. We choose to train the template matching model

using only one example to ease the burden on the user.

The background model, however, must be trained with multiple representa-

tive background frames. Instead of requiring the user to identify specific frames

that do not contain the target, we choose to train on N randomly selected

frames without replacement from the image sequence, again reducing the bur-

den on the user. Like ROI detection, we choose to evaluate the algorithm’s
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Figure 3.14: The accuracy of the de-
tection algorithm when at-
tempting to localize the fore-
ground target on the Ice-
Plant datasets.

effectiveness by measuring its accuracy as

defined in Equation 3.12.

We first evaluate this procedure on

the IcePlant datasets. For these data,

we down-sample the 20Hz data to 1Hz

to achieve parity with the Manzanita

datasets. Recall, for these datasets,

there is limited background motion and

the target occludes nearly the entire

flower. Thus, we expect that relatively
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few frames are required to train the background model, as depicted in Figure 3.14.

Since there are so few frames with the target present for the IcePlant1 dataset,

any miss is exaggerated as seen with 70 training frames. At 1Hz, only 6 frames

contained the target, so a single miss resulted in a 16% drop in accuracy. For the

IcePlant2 dataset, there was a single frame that could not be correctly identified

in any of the experimental setups resulting in an accuracy of 97.5%. Background

subtraction correctly identified the region where the foreground bee occluded the

background flower, but the region was not large enough to trigger a template

match since the bee itself was occluded by other background elements.

These data are not particularly interesting because they don’t sufficiently

stress the algorithm. The result of the algorithm when applied to the Manzanita

datasets better illuminates potential flaws in the approach. In Figure 3.15(a)

we see the accuracy of the algorithm as we vary the number of training frames

for both the Manzanita1 and Manzanita2 data sets. The maximum accuracy

of Manzanita1 is 100% with 50 or 70 training frames, and 90.1% with 60 or 70

training frames for Manzanita2. We see that the accuracy of this algorithm does

not strictly increase as more training frames are added. This is expected since the

frames are chosen randomly and frames including the target will be inevitably

included as the number of training frames increases.

The inflection point in the algorithm’s accuracy is after including about 70 ex-

ample background frames for both datasets. This is somewhat unexpected given

the fact that the Manzanita1 dataset is about a third the size of the Manzanita2

dataset (see Table 3.1). To understand this oddity, we define a new quantity, sen-

sitivity, to be the number of additional misses incurred as the expected number of

training frames containing a target E(x), increases with the number of training

frames x. Note, that E(x) can be computed in the straight forward manner even

86



● ●

●

●

●

●

●

●

●

●

0 50 100 150 200 250 300 350

40
50

60
70

80
90

10
0

Training Background Frames (count)

A
cc

ur
ac

y 
(p

er
ce

nt
ag

e)

●
● ● ● ● ● ● ● ● ●

●
●

●
●

●

Manzanita1
Manzanita2

(a) Detection Accuracy

−4 −3 −2 −1 0 1 2 3

0
5

10
15

20
25

log(expected # frames with target)

# 
m

is
se

s 
−

 m
in

 #
 m

is
se

s

Manzanita1
Manzanita2

(b) Sensitivity to Example Frames

Figure 3.15: These plots illustrate the (a) accuracy and (b) sensitivity of the proposed detection
algorithm. For both data sets training on 70 random images is optimal, and that
the Manzanita1 is more sensitive to the target presence in the example background
images.

though the expected distribution of targets across the training set is not uniform.

Since we are randomly sampling frames, the effect of the bursty distribution of

targets only effects second-order statistics.

In Figure 3.15(b) we see that the Manzanita1 dataset is far more sensitive to

the target being present in the training examples. This sensitivity stems from

the fact that the target tends to appear in the same location on the ROI in

Manzanita1 (near the bottom of the flower in the center), whereas its location

is more evenly distributed around the perimeter of the ROI in Manzanita2 as

seen in Figure 3.16. When the background subtraction algorithm incorporates

a training frame containing a target into the background model, it will have a

significant negative effect on the detection of any other target in a nearby region.

Since the targets in the Manzanita1 dataset are spatially clustered, this effect is

amplified.
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Figure 3.16: The ground truth location of the upper-left corner of the target’s bounding box
with respect to the region of interest for datasets Manzanita1 and Manzanita2.

When the detection algorithm did fail to localize the target, it failed due to

an excess of noise in the difference image produced by background subtraction.

These events typically occurred when the flower was significantly displaced from

its resting location due to wind. In these cases, our assumption of pure planar

motion begin to break down, and the background model begins to poorly account

for the out-of-plane rotation of the flower. An example localization success and

failure are depicted in Figure 3.17.

When considering only frames that actually contain the target, these failures

have two different types of temporal characteristics: many sequential failures and

random single frame failures. When there is significant background noise due to a

major displacement event, failures are likely to be highly correlated, resulting in

many sequential failures. Alternatively, during minor displacement events, some

small amount of noise is introduced and single frame failure are more common.

Random single frame failures can typically be accounted for during tracking,

whereas sequential failures cannot be recovered.
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Figure 3.17: Example target localization superimposed on the difference image produced by
background subtraction (red box). When successful, background subtraction typ-
ically produces limited noise (left). Failures typically arise because of excess noise
(right); here the correct location is denoted by the yellow box.

In order to determine the number of training frames for a future instantia-

tion of this procedure, we suggesting repeating the same measurement was have

performed. In general terms, having fewer than 20 training frames is unlikely

to be sufficient for all but the simplest scenes. Conversely, having more than

150 training frames is likely to over-train the background model, leading to the

failures seen in the Manzanita1 dataset. A reasonable place to start is 70 training

frames, as was found to be optimal for all four tested datasets.

3.4.3 Target Tracking

Though we are tracking the target through time, we are not interested in its

location but rather its presence. As a result, we evaluate our tracking algorithm

as though it were a classifier, measuring precision and recall. Optimally, we would

like to have approximately 90% precision and 90% recall. Since a human will
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eventually be analyzing the image sequences thought to contain the target, we are

willing to sacrifice precision for recall; it is more important for the domain scientist

to be presented all interesting frames even if there are more false positives.

As described in Section 3.3.3, the tracking algorithm has a number of pa-

rameters. There are three that constrain the allowable match values within the

sequence; these can be derived from quantiles a Gamma distribution fit to the

match values of frames where the target is known to be present. Another pair

of parameters constrain the allowable displacement of the target between adja-

cent frames; these are computed from a Normal distribution fit to displacements

between adjacent frames containing the target. In practice, the values of param-

eters constraining displacement can be fixed a priori. When the target is not in

frame, the location reported by the detection algorithm varies wildly. As a result,

a simple threshold is sufficient to differentiate between this random motion, and

the methodical motion of the target.
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Figure 3.18: The precision and recall of
the tracking algorithm when
attempting to identify the
foreground target on the Ice-
Plant datasets.

We first consider the success of this al-

gorithm on the IcePlant datasets. For the

purposes of this evaluation, we trained

the detection algorithm using 20 ran-

dom frames; as we saw in Figure 3.14,

nearly any number of training frames pro-

duces the same detection results. In Fig-

ure 3.18, we see that for IcePlant1 we ei-

ther get 0% or 100% precision and recall

when varying the model parameters.

For IcePlant2 we achieve 100% precision for a wide range of recall values up

to and including 100% recall. Using maximum-likelihood to fit a Gamma dis-
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Figure 3.19: These plots illustrate the effectiveness of the tracking algorithm. (a) shows the
ROC curve and (b) shows the precision recall curve for the Manzanita datasets.
Note, not all true/false positive values are possible. The achievable values are
defined by characteristics of the data and the tracking algorithm.

tribution to the match values when the target was present we got Γiceplant(α =

1.51, β = 0.26). We acquire the parameters for our tracking algorithm by comput-

ing the empirical quantiles of Γiceplant as specified by Equation 3.11. The tracking

algorithm produces 100% precision and recall when using these parameters.

We saw previously that the detection accuracy for IcePlant2 was 97.5%, as

it suffered a single failure due to the target being occluded by the background

(see Figure 3.14). Since our tracking algorithm has 100% recall, this implies

that it properly dealt with a single frame detection error. Since this detection

error occurred in the middle of a sequence, the tracking algorithm created two

adjacent sequences separated by a single frame. We then greedily merged the

two sequences, forming a larger sequence and enveloping the detection error.

Next we consider the Manzanita datasets, which had significantly more un-

related motion and color variation. For the purposes of this analysis, we trained
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Data Set Detection Accuracy Tracking Precision Tracking Recall

IcePlant1 100% 100% 100%

IcePlant2 97.5% 100% 100%

Manzanita1 100% 100% 100%

Manzanita2 90.1% 96.8% 85.8%

Table 3.4: Summary of results when our procedure is applied to the various datasets.

the detection algorithm with 70 random frames; this value produced the high-

est accuracy for both the Manzanita datasets. For Manzanita1, we computed

ΓManzanita1(α = 7.37, β = 0.01) as the maximum likelihood Γ. Applying the pa-

rameters as described above, we were able to achieve 100% precision and recall

as shown in Figure 3.19. This was somewhat expected given that the detection

algorithm was able to locate the targets with 100% accuracy.

Like the other datasets, we compute ΓManzanita2(α = 2.22, β = 0.05) from

match value of frames with targets present in the Manzanita2 dataset. Configur-

ing the algorithm with the parameters derived from ΓManzanita2 results in 96.8%

precision 85.8% recall. This is within 2% of the precision and 0.5% of the recall

of the best possible parameters found by brute force.

On average, 90% of frames in a given sequence were correctly returned to the

user, but in the worse case, this dropped to 45% for a single sequence. Further,

our 85.8% recall on the Manzanita2 dataset is less than the 90.1% detection ac-

curacy. These failures are due to a few representative types of errors: a) dropped

subsequences, b) dropped sequences prefix or suffix, and c) added sequences.

Type (a) an (b) failures are caused by the detection oscillating between two po-

tential targets in the frame; one is the correct target, the other is noise. This

sort of oscillation isn’t apparent in the accuracy measurement of the detection
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algorithm. Type (c) errors happen when the noise found in the difference image

is not random, but instead a systematic problem detecting some novel part of the

background. To the detection algorithm, this error appears to be a foreground

object and it triggers the tracking algorithm as a result.

It seems that each of these types of errors are equally likely, as measured by

intentionally using bad parameter values to increase the errors. A summary of

the results of our approach on the four datasets are shown in Table 3.4.

3.5 Related Work

Our work encompasses a number of different subfields within computer vision. In

particular we perform object detection of localize the region of interest and locate

a potential target present on or near that ROI, and then use object tracking to find

sequences of frames that contain the target of interest. The literature presents

a number of different approaches to each of these problems. We provide a short

summary of related approaches and applications.

Object Detection

There are a variety of mechanisms useful for performing object detection with

in images. When considering video imagery, the three primary approaches dis-

till into detecting the foreground object through direct modeling, detecting the

object by modeling the background and searching for occlusions, and searching

for salient image features likely to be the foreground object. The simplest form

of foreground object modeling is template matching [13]. This approach requires

near matches of the object to be present in the image, an assumption reasonable

in some situations like our detection of the region of interest. An alternate ap-
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proach based on a cascade of features passed to a classifier is proposed by Viola

et. al. [107]. This approach has been shown to work quite well for detecting ob-

jects, like faces, that share common structure. Neither of these approaches work

well for detecting bees because they have poorly defined visual features with little

structure.

An alternate approach simply searches for the region in the image that would

most likely grab the attention of a human. This type of approach is compelling

since the bee is visible to a human when the video is played back. Itti et. al. [46]

[45] develop a procedure that produces a saliency map, where each location in

the map represents the interestingness of that location computed through abrupt

changes in color, intensity, or orientation. This approach has been successfully

used detect small sea life passing by underwater observatories [24] [17]. This

approach has trouble with our application since the bee we are trying to detect

is somewhat less apparent that the flower. As a result, the algorithm will detect

sun flecks on the flower and surrounding plant, while ignoring bee itself.

The approach we settled upon for our work was modeling the background and

asserting that non-background objects were the foreground object of interest.

There are a variety of background subtraction approaches that leverage both

parametric and non-parametric descriptions of the background. Harville et. al.

[37] use an explicit mixture of Gaussian approach to model the background at

individual pixels, adapting that model over time. Instead of explicitly fitting a

Gaussian, Ko et. al. [54] build an empirically distribution of pixel values in the

background, comparing this to the distribution taken from an example image

using the Bhattacharyya distance [8]. Such a non-parametric approach has had

success in both our application and others [25] that attempt to localize foreground

object against a natural background.
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Motion Detection

An alternative to directly detecting the object itself is detecting characteristic

motion within the scene that likely represents the object. This is a more specific

version of the saliency approach, usually only considering simple features like

edges and corners [64]. A large variety of such so-called optical flow techniques

are presented in the literature. In general, they attempt to extract a set of

representative image features, and locate their approximate location is subsequent

images [6]. It is important to note that performing such analysis requires very

high-temporal resolution data to minimize the actual change between images.

This approach had little success on our data since relatively few features that

were selected were actually part of the target, and the target’s motion was small

with respect to the natural motion present in the rest of the scene.

Object Tracking

Once targets have been identified, we used object tracking to help discard false

positives, requiring a sequence of detections to obey certain constraints. Similar

approaches largely fit into two categories: deterministic approaches attempting to

minimize some energy function representing the object’s motion and statistical

approaches that try to propagate the uncertainty in detection into the track-

ing algorithm. Shafique et. al. [93] suggest a deterministic approach using a

non-iterative greedy approach to find the minimum energy path linking target

detections across multiple frames. Sand et. al. [90] tracks far more points for

much longer, framing their work as an extension of optical flow for use in point

tracking.

The deterministic approaches separate detection from tracking [21]. A class of

statistical approaches, called particle filters [88], attempts to integrate detection
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and tracking by feeding tracking results back into the detection to help improve

precision and recall. One representative approach to such feedback is work by

Tao et. al. [97] where they attempt to track how various objects, generalized

as arbitrary layers, move around the scene. Each pixel is to a layer and this

assignment is allowed to change as the layers are tracked and individual pixels

are found to be moving counter to the dominant motion of the layer. A similar

form of feedback is present in work by Betke et. al. [7] where a recursive Bayesian

filter [95] is fed data from both the object detection algorithm itself as well as

the predicted tracks of those objects based on previous motion. Considering

these tracks help to rule out mis-detections, a pattern we successfully applied to

improve the precision of our procedure.

3.6 Conclusion

We have developed a procedure that is able to gather significantly more data

than was previously available by manual collection. Through application driven

evaluation, we have shown that our methodology can produce results useful for

many biological studies, specifically those related to pollinator visitation. The

key innovation of this procedure is the automatic identification and localization

of a biologically relevant region of interest. By automatically cropping this region

from the larger frame we both register the images for and discard segments of

the images that would only serve to distract further processing. Though our

evaluation is specific to a particular set of studies, we have defined a larger class

of applications that could leverage this approach.

Using this data collection methodology, biologists can gather detailed data

about somewhat rare, novel events that could not be captured previously without

significant expense.
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CHAPTER 4

Predicting Discrete Spatio-Temporal Signals

In the previous chapter, we developed a procedure to extract frames containing

a novel object occluding a region of interested from a lengthy video sequence.

Though this procedure is directly useful to existing biological studies, it still has

the same scaling problems present in existing methods: more resources (now in

the form of cameras rather than people) must be spent to gather data over a

large area containing many independent regions of interest.

In this chapter we propose an extension to allow such spatio-temporal data

collection. Attempting to capture all events with far fewer cameras than regions

of interest is clearly impossible. Instead, we attempt to measure density of events

per unit time though sampling, which is a useful summary statistic that can be

used to further a variety of biological studies.

4.1 Introduction

Existing biological studies attempt to monitor some fixed area, searching for

novel objects near regions of interest, using minimally invasive instrumentation.

Similar to monitoring single regions of interest as discussed in Chapter 3, current

techniques require a human to monitor the phenomena either in-person or on

video after the fact. For example, studies that monitor plant-pollinator inter-

actions typically can monitor less than 5 approximately 1m2 sites for about an
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Figure 4.1: A 1m2 patch of flowers for which we’d like to collect pollinator density. The flowers
(regions of interest) are easily identified by a human observer.

hour [20], or monitor more than 50 approximately 0.5m2 sites for only a few min-

utes each [5]. These approaches essentially result in a non-random sample of the

events that is then used to draw conclusions about the phenomena in question.

Our goal is to construct a procedure that can monitor a 1m2 site for an entire

day to capture the density of pollinator visitation.

The class of target applications has a variety of important characteristics that

we must exploit to scale these data collection efforts. These characteristics fall

into three categories: attributes of the regions of interest, flexibility of the instru-

mentation, and properties of the event being sampled. First, regions of interest

(ROIs) must be novel with respect to the rest of the scene and easily visible when

viewing the entire scene. For example, the 1m2 patch seen in Figure 4.1 contains

14 flowers that are easily visible from this perspective. We allow these ROIs to

move about some rest position during the course of data collection, but we expect

them not to occlude one another. Though we could complicate our approach to

tolerate occlusions, there are many scenes, such as Figure 4.1, that do not require
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the additional algorithmic complexity.

Detecting events occurring over the entire patch would require particularly

high resolution imagery. Our previous work, discussed in Chapter 3, required

that the ROI occupy a 150px-square area. If we assume the ROI is 1-2in across,

we would need imagery with a resolution of approximately 4500x4500 pixels to

cover a 1m2 area. Currently, such imagery can only be acquired by professional

digital cameras. Further, if we wish to scale to areas larger than 1m2, we have

no hope of capturing high enough resolution imagery even with the best digital

cameras available. Thus, we must instrument the environment with one or more

pan-tilt-zoom cameras that we can actuate to produce a narrower and higher

resolution view of an individual ROI.

We anticipate that the various ROIs have a non-uniform probability event

occurrence. For example, in the case of pollinator visitation, certain flowers are

more likely to attract pollinators than others. Though event duration may vary,

we expect that there is a temporal correlation between events; the probability of

an event occurring a short time in the future is higher if an event has occurred

recently. This is a property of optimal foraging theory [65], which pollinators are

known to implement [9].

Given these properties of the application, we strive to build a more scalable

approach to gathering data using pan-tilt-zoom cameras to capture video imagery.

Simply using random sampling of regions of interest in the given site neglects a

key property of our problem: events are know to occur with non-uniform density.

Instead, we propose using adaptive stratified sampling [101] to direct the motion

of the in-situ cameras, each stratum being a particular automatically identified re-

gion of interest. This sampling procedure allows us to focus our limited resources

and adapt to the clustered nature of events, producing an unbiased estimate of
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events per unit time. Domain scientists can then leverage the resulting density

estimate to draw conclusions about the phenomena under study.

The rest of this chapter is structured as follows: motivating biological ap-

plications are discussed in Section 4.2. The proposed procedure is described in

Section 4.3. We discuss the experimental setup used to collect a representative

dataset in Section 4.4 and describe the simulation we built to iteratively refine

and evaluate our approach. Section 4.5 contains a thorough evaluation of our

approach. Related work is discussed in Section 4.6, and conclusions are drawn in

Section 4.7.

4.2 Motivating Application

Pollinator studies typically focus on either the behavior of the pollinator itself,

or the effect the pollinator has on its environment. Both of these types of studies

can benefit from long-term density estimates over a large area. For example,

Fontaine et. al. [30] studied how density of bumblebees in a given region affects

their choice in flowers. In particular, will a higher density of bees result in a more

flower species being visited? Data for the existing study was collected in the field

by a human observing individual bees and flowers. Though aided by software

[78], which provided a simple interface for recording individual events, a trained

observer was required to identify the events.

Bartomeus et. al. focus on the effect pollinators have on their local environ-

ment [5]. They postulate that invasive species are more attractive to pollinators

than indigenous species, resulting in the further spread of the invasive plants.

Data collection for this study required humans to manually count pollination

events over many small regions for a short period of time. The density of polli-
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Figure 4.2: The process we propose consists of the three logical parts depicted here: detecting
and localizing the various regions of interest (ROI) in a large field of view (FOV)
image, actuating the camera to focus on a signal ROI, and detect visitation events
on that ROI adapting the sampling procedure as necessary. The output is the
temporal density of visitation events to the set of ROIs.

nation events between patches with and without invasive plants were compared

to draw conclusions.

To increase the predictive power of these studies requires long-term data col-

lection over a larger area. The procedure we propose can use one or more cameras

to instrument a given region, allowing biologists to collect pollinator density data

over approximately 1m2 patches for multiple days. Further, we can instrument a

number of independent regions to enable biologists to compare pollinator density

across related regions. Alternatively, we can measure the density of pollinator vis-

itation to different flowers within a single region, using multiple cameras trained

on the same patch.

4.3 Procedure

We define a multi-stage sampling procedure to estimate the temporal density

of novel events occurring near several regions of interest over some predefined

area. Like other procedures we have discussed, this procedure can be tailored to

the specific application of interest; the application we will examine is pollinator

visitation density to a field of flowers.
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The procedure is composed of three distinct parts as depicted in Figure 4.2.

First, from images with large spatial extent, we detect the approximate locations

of the various regions of interest in the scene. Second, we actuate the camera to

zoom in on each region in succession, collecting higher resolution imagery with a

narrower field of view. Finally, we detect the presence of novel objects on the ROI

under current study, and feedback presence information to adapt the sampling

methodology to best capture the phenomena.

Prior to executing this process, we must train the procedure on the current

arrangement of the scene. This requires us to capture some number of training

images to be used to correctly localize the regions of interest as well as train our

sampling and detection algorithms. The duration that can be sampled without

retraining the process varies between applications. For the pollination studies we

consider, the process has to be retrained daily as flowers bloom and wither over

time.

4.3.1 Assumptions

In order to make this problem tractable, we make a series of realistic assumptions

about the character of both the regions of interest and the phenomena. Most

importantly, for the applications we consider, we are only interested in localizing

events that occur near one of the regions of interest present in the scene. For

example, we only are interested in pollinator visitation to flowers, and are not

concerned with pollinators flying about the scene. In order to limit the amount

of data we require humans to label, we assume that all regions of interest look

roughly the same. This way, a user supplying a single example is sufficient to

identify all regions of interest. When this is not a realistic assumption, like when

viewing a large flower from different perspectives, we allow the user to manually
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identify each region from the training imagery.

As mentioned earlier, we also assume that not all regions of interest are equally

interesting implying that each region of interest has a different probability of

an event occurring. Additionally, we expect this probability to be stable over

some period of time T so that we can successfully adapt our sampling procedure

accordingly. We expect that T is much larger than the amount of time required to

sample each region of interest in succession. In the case of flowers, this duration

is related to the lifetime of a flower [9]; in most cases more than a day.

Our assumptions about the interestingness of individual regions of interest

to the phenomena are valid for a variety of applications, and specifically for

pollinator behavior. Pollinators have been shown to obey optimal foraging theory

[23] [9]. This theory, originally stated by MacArthur et. al [65], when applied

to pollinators states that a pollinator chooses flowers that appear to be the most

rewarding, they limit the effort expended on finding new rewarding flowers, they

dwell on flowers that are in fact rewarding, and they ignore flowers found to be

not rewarding. Since we expect that all pollinators have a similar definition of

reward [56], this theory implies that each flower has individual probability of

visitation proportional to its reward, and that this probability is stable while the

reward persists.

4.3.2 Identifying Regions of Interest

The regions that we would like to sample are the particular regions of interest in

the image; in the case of the pollination studies, the various flowers. Our goal is

to detect and localize these regions of interest reliably so that we can later actuate

our camera to gather higher resolution imagery of individual flowers. Like our

previous formulation of ROI detection in Section 3.3.1, we anticipate that the

103



(a) Entire Scene (b) Template Similarity

Figure 4.3: The detection and localization of ROIs seen in the entire scene (a) is shown in the
template similarity image (b). We can see that not all regions of interest can be
localized, especially those that are significantly occluded.

ROI movement can be approximated by 0-mean Gaussian motion about some

representative location (xc, yc).

xi = N(µ = 0, σx) + xc

yi = N(µ = 0, σy) + yc (4.1)

This movement is due to natural effects, like wind, that perturb the scene causing

random and unpredictable motion. Thus, our goal is to identify this characteristic

location by inspecting some sequence of training images.

To detect and localize the set of regions of interest present in the image,

we have the user crop a single region of interest from a representative image.

We then use template matching with a Euclidean distance similarity measure (as

described in Section 3.3.1) to identify regions. Using only a single template image

takes advantage of our assumption that all regions of interest look similar, and

thus will respond strongly to the single extracted template image. The result

is a number of distinct regions with high similarity as seen in Figure 4.3. In

this visualization, darker implies more similar; the various regions were manually

annotated in accordance with the actual flower locations.
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In order to produce actual characteristic locations, we cluster all points within

the 5th-percentile of the maximum similarity. Since we are using Euclidean dis-

tance to measure similarity, we use the 5th-percentile of the empirical distribu-

tion; if we were using cross-correlation, we’d use the 95th-percentile. All contigu-

ous regions smaller than 5% of the template image’s size are discarded, removing

noise that could incorrectly generate nonexistent regions. To find a represen-

tative location for the individual regions, we extract regions from a number of

representative training images. The identified locations are clustered, producing

an average location.

This approach works quite well for many scenes. However, for regions that

aren’t sufficiently similar, like large flowers viewed with different orientations,

using a single template image will likely fail. To surmount this problem, we can

use multiple template images extracted from a representative frame by the user.

We again use template matching to locate matching regions. However, instead

of searching for all regions that respond strongly, we look for the single strongest

response for each template. This is analogous to detecting and localizing a single

flower described in Section 3.3.1. Though this modified approach requires more

work to deploy, it will result in more reliable identification of the regions.

4.3.3 Adaptive Stratified Sampling

The simplest approach to sampling the phenomena in question would be to ran-

domly sample the regions of interest. However, this does not exploit the fact

that each region of interest has as unique and independent likelihood of visita-

tion. Since we expect significant variation in the frequency of events across the

regions, we choose to use an approach called adaptive stratified sampling. Here

we defined each region of interest to be a stratum, or sub-population with re-
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spect to all regions of interest present in the field of view. We must estimate

the interestingness Is of each stratum s and devote ns samples to that region,

such that Is ∝ ns. That is, the more interesting the region, the larger fraction

of total samples N are gathered while focused on that region. To estimate Is we

could employ an epoch based approach; we randomly sample each stratum for

some fraction of the epoch to estimate Is and then sample the phenomena pro-

portional to Is for the rest of the epoch. However, this approach wastes resources

and is cumbersome.

Instead, we apply a specific instantiation of adaptive stratified sampling de-

veloped by Thompson et. al. [101] that produces a model-unbiased estimator

of density without directly computing Is without the need for sampling epochs.

Again, we define an individual region of interest as a stratum and additionally

define a sample as the dwell time of a camera focused on that stratum. Thus, our

sampling algorithm progresses through each stratum sampling for some period of

time τ . If an event is detected within that stratum during the camera’s dwell time,

the sample duration is increased to 2τ . The result of this sampling procedure
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Figure 4.4: The running total of pollina-
tion events over time to a par-
ticular flower. We see that
it follows a characteristic rate
λ = 0.113.

is the number of events that were ob-

served Ŷ during the entire sampling pe-

riod T ; or simply an estimate of the den-

sity of events D̂ = Ŷ /T .

Since we are no longer sampling ran-

domly, we must show that the resulting

model produces an unbiased estimator for

the density D. We assume that each stra-

tum s can be modeled as a Poisson pro-

cess [72] with intensity λs and that it will
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be sampled for a duration nsτ . Thus, conditional on λs and ns, the number of

observed events Ŷs from stratum s for the duration of sampling is Poisson(λsns).

Figure 4.4 shows pollination events occurring to a single flower over time. Mod-

eled as a Poisson process, it has a characteristics rate of λs = 0.113. Finally, the

overall density is the sum of independent Poisson processes, which is also Poisson

with intensity λ.

We are not interested in λs, the rate of events at a single stratum, we instead

would like to show that E[(D̂ − D)2] = 0, making D̂ an unbiased estimator of

the phenomena’s density across all strata given this sampling procedure. From

the Poisson assumptions we have:

E[D̂s|λs, ns] = E

[
Ŷs

nsτ
|λs, ns

]
= λs (4.2)

E[Ds|λs] = E

[
Ys

Nsτ
|λs

]
= λs (4.3)

So,

E[(D̂s −Ds)
2] = E

[
λs

τ

(
1

ns

− 1

Ns

)]
(4.4)

E[(D̂ −D)2] =
∑

s

E

[
λs

τ

(
1

ns

− 1

Ns

)]
(4.5)

Since E[Ȳs|λs, ns] = λs/(nsτ), an unbiased estimate of E[(D̂ −D)2] is:

∑
s

Ȳsns

(
1

ns

− 1

Ns

)
(4.6)

A rigorous analysis of this sampling methodology, showing that it produces an

unbiased density estimate, can be found in [101].

Using adaptive stratified sampling to produce a density estimate requires we

only learn a single parameter, the sample duration τ . We know that τ must

be much larger that the minimum amount of time the PTZ camera takes to
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pan and focus on a new target. From experimentation, this as found to be

approximately 4 seconds. Also, τ should not be too large, or it would would ignore

temporally coincident phenomena, accidentally introducing bias into the sampling

procedure. In order to learn τ , we add a training phase to the beginning of

our deployment when a human observer records events occurring to the stratum.

Given these representative data, we run the procedure in simulation to determine

the appropriate value for τ (more details about the simulation can be found

in Section 4.4.2; an evaluation of our training methodology can be found in

Section 4.5.2).

4.3.4 Detecting Events

The detection of events occurring nears regions of interest follows directly from

our work in Chapter 3. However, this approach was not intended to work on-line,

which is required for this application. Recall, that all parts of that method are

on-line compatible except for the final tracking portion. The tracking algorithm

chooses all frames in the video that meet the seed criteria, and tries to grow

sequences around those frames. We modify this to look for a seed frame while

we are sampling from a given stratum. If one is found, we greedily grow the

sequence around that seed until it either runs into the bounds of the sampled

sequence or exceeds the sequence criteria. This modification does not change any

of the properties of the detection algorithm described earlier, so we expect it to

perform similarly.

The training requirements of that procedure are an instance of the ROI

cropped from a single frame, approximately 50 frames to build a background

model, an instance of the event cropped from a difference image, and a few

labeled images to derive the distributions of match values and frame-to-frame
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target displacement. The exact number of frames required to train the back-

ground model on the ROI varies based on the complexity and motion of that

ROI. Section 3.4.2 explains how to choose the number of required frames.

We intend to acquire these data at the inception of the deployment while we

compute τ . The camera will be trained on each stratum in sequence for suffi-

ciently long to gather frames for a background model and capture an event. A

human would then be required to annotate these acquired data so the distribu-

tions for match value and frame-to-frame target displacement can be computed.

Additionally, we must account for individual stratum appearing, changing their

appearance, or disappearing; for example, a flower can blossom, change color, or

whither during the course of a long deployment. To compensate for these effects,

we also plan to retrain the background model at the start of each period of sam-

pling; say, the beginning of each day. This would only require focusing on each

stratum long enough to acquire approximately 50 frames.

4.3.5 Using Multiple Cameras

This procedure can be easily extended to use multiple cameras. The extra cam-

eras can be trained on independent, adjacent, or identical fields of view. In all

cases, the procedure we describe would actuate each camera independently. If all

of the cameras are trained on the same field of view, regions of interest within

that field of view could be divided amongst the available cameras. In this way, the

field of view could be more densely sampled producing a more accurate density

estimate.

Each of these methods for leveraging extra cameras have specific usages in

the target applications. For example, collecting data for independent or adjacent

fields of view is applicable to the work of Bartomeus et. al. where they are study-
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ing separate environments containing a varying number of invasive plant species

[5]. Work by Fontaine et. al. can leverage overlaid cameras, each tuned for a

particular species of flower in the field of view [30]. This way, pollinator visitation

density estimates can be acquired on a per flower species basis to determine if

bumblebee’s choice of flower is affected by density of pollinators in the region.

4.3.6 Generalizability

While describing our procedure, we have made a series of assumptions and ex-

plained how they are valid for the particular application of interest. These as-

sumptions fall into two categories: requirements of the regions of interest within

the scene, and characteristics of the novel event. We argue that they are gen-

erally applicable, such that this procedure can be reused for a variety of other

applications.

We have required all regions of interest to be relatively similar in appearance.

We have proposed an approach that uses multiple regions templates to tolerate

the difference in appearance, and will show that it performs significantly better

than using only a single template. Additionally, we require that the various

regions of interest do not occlude one another. For many applications, we believe

that there is some vantage point that would allow this assumption to hold. When

this is impossible, we could attempt to track the regions of interest over time

using an object tracking approach that tolerates occlusion. For example, we

could use template matching to localize the target in each frame. Then instead

of clustering between frames to find an average location, we could track those

points over time, accounting for occlusions similar to work by Sethi et. al. [92];

we leave this modification to future work.

Fundamental to our sampling approach is the temporal correlation between
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events; both the fact that an event occurring at time t implies a higher likelihood

of an event at time t+ 1 and that event probability at a given stratum is stable

over some time T . As mentioned earlier, this is true for pollinator visitation,

but we argue that it is also applicable to many other applications. Specifically,

this assumptions holds for any animal visitation phenomena that obeys optimal

foraging theory [65], like the grazing of deer [52] or the foraging of black bears

[71].

4.4 Experimental Setup

In principle, we could have taken an implementation of our approach into the

field and attempted to estimate the density of a particular phenomena. In our

case, that would entail taking a pan-tilt-zoom (PTZ) camera into the field where

we could capture pollinator visitation to flowers in some patch of ground.

Unfortunately, it would be difficult to thoroughly evaluate its effectiveness

for a variety of reasons. First, we’d have no ground truth data to compare our

estimate against. Second, it would be difficult to evaluate the effect of changing

τ , the minimum time spent sampling an individual stratum. Third, iterating on

the design and reproducing the evaluation would be complex due to changing

field conditions between iterations. Finally, any data collection efforts would be

subject to the availability of the phenomena in the field. In the case of pollinator

behavior, this is tightly coupled with the blooming of local flowers, a transient

event. To surmount these difficulties, we collected high-resolution imagery and

simulated camera actuation and subsequent sampling.
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Figure 4.5: An example frame from a dataset acquired to evaluate our approach. Here, the
individual stratum are identified and labeled.

4.4.1 Data Acquisition

The set of biological studies driving this work wish to gather data about pol-

linator visitation density. Thus, to evaluate our procedure, we collect video of

pollinator visiting a patch of flowers; this patch of flowers is in fact the same

patch as the IcePlant data sets collected in Chapter 3. We chose to capture high-

resolution video of this patch of ground using an HD video camera [15]. This video

Data Set Strata Day

IcePlant1 14 0

IcePlant2 10 1

IcePlant3 13 2

Table 4.1: The datasets, collected at
10am on three sequential days,
were each 15 minutes in length,
but differed in the number of
strata present in the scene.

was captured at 1920x1080 at 20Hz and

spanned an entire 1m2 patch of flowers.

Using this video, we can emulate a

640x480 PTZ camera with 3x zoom by

simply scaling and cropping the frames

appropriately. This allows us to have

ground truth data for the entire scene so

we can properly evaluate our approach.
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To gather this ground truth, each frame was manually segmented into strata and

each (frame, strata) pair was manually annotated when a pollinator was present.

Figure 4.5 shows a single frame from the IcePlant1 dataset with the stratum

identified. Three datasets, listed in Table 4.1 were acquired and analyzed in this

fashion. Each dataset had a duration of 15 minutes. Though the study could

have lasted much longer, we limit our analysis to 15 minutes so that we can more

easily inspect the ground truth data.

4.4.2 Camera Simulation

With these datasets in hand, we faithfully simulated the entire system. Not

only does this simulation help us experiment with the sampling algorithm, it

will also be used to train the sampling algorithm for future deployments. The

main components of our simulation were the camera’s actuation and the target

detection. To reproduce the camera in simulation, we experimentally measured

the amount of time it takes to pan and focus on a new target when programatically

actuated. The exact duration depends on the actuation required, but the motion

was typically completed in 4 seconds.

This simulation frees us to experiment with the value of τ as well as the

number of cameras to deploy. We can easily vary τ and measure the affect it has

on the density estimate. Similarly, we can divide the field of view into sections,

one per virtual camera, and see how many cameras are needed to improve our

density estimate.

To reproduce the target detection, we implemented the various failure modes

described in Section 3.4.3. The simulation reads the human labeled, ground truth

data and randomly chooses to permute it, inducing error. Each permutation

emulates either removed subsequence error or an added sequence error, the two
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characteristic forms of error present in our discrete signal estimation algorithm

(Section 3.4.3). We will use this mechanism to induce detection errors comparable

to those seen in our previous experiments. Since we saw approximately 3 times

more recall errors than precision errors, we will induce 3 remove-type errors to

every one add-type error.

4.5 Evaluation

For our evaluation, we test our the accuracy of our procedure when gathering

pollinator visitation density for a single patch. For an actual biological study,

multiple independent patches would be monitored. However, we only need to

consider a single patch since the phenomena occurring at each are independent

[5].

For these applications, the biologists would like to compare density estimates.

There is no particular error bounds required by the domain scientists, but any

significant error reduces there ability to draw statistically significant conclusions.

Existing studies [5] have measured pollinator visitation density to between 5%

and 15% error. Thus, we strive to measure the density of events per unit time to

within 10% of its actual value. Our analysis is split into three separate parts: eval-

uating our ability to reliably localize the strata, the effectiveness of the training

methodology used to tune dwell time for a particular stratum, and an assessment

of the benefit gained from deploying multiple cameras to a single patch.

4.5.1 Localizing Strata

Correctly locating the strata is crucial to the success of our sampling. If the

strata are incorrectly identified, it will induce error in our density estimate by
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Single Template Multi-Template

Precision Recall Precision Recall

IcePlant1 66.7% 85.7% 99.8% 99.8%

IcePlant2 61.5% 80.0% 99.3% 99.3%

IcePlant3 70.5% 92.3% 99.6% 99.6%

Table 4.2: The precision and recall of the two approaches for locating strata over the course
of the entire video sequence. Though using multiple templates requires more user
input, it is clearly worth the cost.

either having the camera focus on regions that don’t contain an actual ROI or by

ignoring regions that actually do contain an ROI. We have proposed two similar

approaches; one requires the user locate a single representative region, and the

other requires the user identify all regions of interest. Regardless, we evaluate

the results using the same criteria in both cases: precision and recall of region

recognition and localization. We further require that we can correctly identify

this regions for the duration of the video captured. A region is said to be correctly

localized if the bounding box identified completely contains the region of interest.

Figure 4.6: The localization of strata us-
ing a single template for the
IcePlant1 dataset. Any pixel
whose similarity is within the
5th-percentile of the maxi-
mum similarity is represented
in black. The circles repre-
sent the actual location of the
strata.

An example result of applying our

procedure using a single template to a

frame from the IcePlant1 dataset can be

seen in Figure 4.6. All of the black-

colored blobs are regions thought to con-

tain a stratum, where as the black circles

identify regions that are actually flowers.

As we can plainly see, this approach pro-

duces a number of false positives while

not even producing 100% recall. Instead,

if we use one template image per stratum,
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we produce exactly only possible localization for each stratum, and can correctly

identify all 14 strata with almost no error (Table 4.2). Since a single region

is identified for each template, precision and recall values for each dataset are

identical since each localization failure will affect them identically. Although it

can become a maintenance burden and is more time consuming to have the user

identify all strata present once per deployment, the resulting precision and recall

of identification are certainly worth the added expense.

Once we identify potential strata in a single frame, we then need to cluster

these regions across frames, computing an average location. We keep adding

frames until the average location of the region stabilizes. For the three datasets

we’ve captured, the motion of the individual flowers plus the motion of the cam-

era was so minor that 5 frames was sufficient to stabilize our location estimates.

When more motion is present, like the Manzanita datasets evaluated in Sec-

tion 3.4, we expect that an order of magnitude more frames will be needed to

stabilize these estimates. Still, even if we have to capture 50 frames of train-

ing data, it is a similar number of training frames we will require to train the

sampling model for camera actuation (see below) or the background subtraction

model for event detection (see Section 3.4.2).

4.5.2 Sampling Model Parameters

There is one fundamental tuning parameter for our process, the time constant

τ . This constant defines the initial duration that a given stratum is sampled

before moving to the next. If this value is too small, we will spend too much time

panning between stratum and not enough time sampling the phenomena. If the

value is too large, we will bias our estimate toward a single stratum, ignoring the

globally occurring phenomena.
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(b) Full Dataset Error

Figure 4.7: The percentage error in our density estimate as we vary the dwell time on a single
strata. The training error (a) was computed by only considering first 1/6 of the
data set. When we consider the entire dataset (b) we can compute the optimal
dwell time these data.

To compute τ , we simulate the phenomena and the sampling procedure on

the initial 2 minutes of data. As discussed in Section 4.3.3, this period would be

part of the initial training period where labeled data would be available. Thus,

we try all possible values of τ between the 5 seconds (the minimum suggested

by the pan duration) and 100 seconds. As expected, we see that neither small

nor large values of τ are appropriate, Figure 4.7(a). The values displayed here

represent a window of 10 values of τ surrounding the data point. We average

because a particular value of τ may do particularly well on the training data if

it transitions at exactly the right time by chance. Over-fitting in this way would

reduce the generalizabilty of the τ chosen.

In this case, the optimal value of τ is approximately 20 seconds, resulting

in a 19.53% error in density (0.095 events/sec measured versus 0.068 events/sec

actual). When we apply this value of τ to the entire dataset, we find that we get a
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10.82% error in density (0.056 event/sec measured versus 0.062 events/sec actual).

Figure 4.7(b), shows that τ = 20 is the optimal value when considering the entire

dataset. This means that our training methodology produced an appropriate

choice of τ for the measured phenomena.

It is important to note, that the value of τ is dependent on the phenomena

but not specific to the strata currently present in the scene. That is, as the strata

change, say new flowers bloom and old flowers whither, we can still apply the same

values of τ for our analysis [56]. Using τ = 20 seconds, we computed the density of

Day Strata Density Error

0 14 10.82%

1 10 11.43%

2 13 11.17%

Table 4.3: The percentage error in our
density estimate using τ = 20
seconds on the three datasets.
We see that the error is rela-
tively consistent event though
the number of strata changed.

pollinator visitation for the remaining

two datasets, IcePlant2 and IcePlant2.

We see in Table 4.3 that the resulting er-

ror in our density estimate remains sta-

ble. This implies both that the phenom-

ena of pollinator visitation is relatively

stable and that our sampling methodol-

ogy is able to repeatably capture an ac-

curate density estimate.

4.5.3 Utility of Added Cameras

If we wish to further reduce the error in our density estimates, we can employ

more cameras to more densely sample the phenomena. Clearly, having more

cameras than stratum is wasteful, but the utility of each additional camera is not

immediately clear. In particular, the utility is likely tied to the phenomena; if

particular flowers are never visited by pollinators, there is no reason to devote a

camera to sample that flower.

For our particular deployment, the utility of additional cameras on the
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(b) Added Camera Utility

Figure 4.9: We approximately double the number of strata by combining the IcePlant1 and
IcePlant2 datasets in simulation. (a) The percentage error in our density estimate
as we vary the dwell time on a single strata. (b) The utility of added cameras on
this simulated data with τ = 20.
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Figure 4.8: The absolute error between
the actual density and the
measured density decreases as
the number of cameras in-
crease.

IcePlant1 dataset can be seen in Fig-

ure 4.8. As expected, as the number of

cameras increase, the error approaches

zero. Even with fewer than half as many

cameras as strata (6 cameras and 14

strata), we can achieve less than 4% error

in our density estimates. Depending on

the specific requirements of the biological

study, deploying 6x more cameras may be

worth the added expense.

We can further stress our procedure by simulating a patch with approximately

double the number of flowers by simulating a dataset containing both the Ice-

Plant1 and IcePlant2 datasets side by side. We see that τ = 20 is again the
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optimal value for this simulated dataset containing 24 strata (Figure 4.9(a)), fur-

ther reinforcing that this value is characteristic of the phenomena itself. When

adding more cameras under these conditions, we find that it again takes about

half as many cameras as strata (11 cameras and 24 strata) to reduce to about

5% (Figure 4.9(b)). Interestingly, we notice that the progression to this state is

somewhat erratic. This is an amplified version of similar behavior we see when

considering fewer strata. As we add more cameras, their utility does not become

pronounced until each camera has fewer than 5 strata to sample. Thus, we assert

that we can sample a large region containing upwards of 20 strata with den-

sity estimate accuracy sufficient for biologists, but to reduce the error to below

5% each camera must be assigned fewer than 5 strata. Still, it is important to

note that this procedure can produce arbitrarily accurate density estimates by

devoting more resources to sampling the phenomena.

4.6 Related Work

There are a number of fields that have produced work related to the procedure

we describe. Here, we discuss related sampling approaches and we have already

examined approaches related to event detection in Section 3.5.

As discussed earlier, the adapting our sampling approach to the phenomena

can be achieved using either a one-phase or two-phase approach. These phases

represent when information is collected about the location and density of the

phenomena, and when the output data is actually collected. The two-phase ap-

proach measure properties about the phenomena in the first phase, defining a

plan of action for the second phase. In contrast the one-phase approach continu-

ally adapts, lengthening the time available to collect the actual data. A review of

such one- and two-phase approaches to adaptive stratified sampling is presented
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by Turk et. al. [103]. Their key observation is that no signal sampling strategy is

appropriate for all applications, as support by numerous studies and simulations.

Thus, we only choose to consider sampling approaches from the literature that

attempt to sample data for functionally similar applications.

Two-Phase Sampling

One related application is trawling for fish to determine their density in a par-

ticular region of ocean [32]. Like our applications, thee fish cluster in certain

areas that are not known a priori and must be located in order to effectively

determine their density. These regions are analogous to our flowers that can be

visually detected. Still, even though we now have a hint as the probably lo-

cations of the events, we have no understanding of which regions are likely to

attract more pollinators. For the fish trawling study, the employ a two phase

approach; first locating the regions with large quantities of fish and subsequently

returning to sample those regions more densely. They found that this straight

forward approach produced decent results both in simulation and in practice.

An extension of this two-phase approach is presented by Conroy et. al. [19].

Instead of simply using the values acquired by the first phase to inform the

sampling in the second phase, they model the phenomena measured in the first

phase using a Bayesian formulation. Using this formulation, they can propagate

the error in the initial phase into the second phase, placing more accurate error

bounds on the final estimate.

One-Phase Sampling

The one-phase sampling approach developed by Thompson et. al. [100] [101]

forms the basis of our work. Similar to [32], the application considered is trawling
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for marine life, in this case shrimp. They propose a one-phase approach that

updates the trawl length based on the catch in the current trawl. We adapted

this to length the sample duration of a particular flower when a target was found

on that flower. This takes advantage of the characteristic patchiness of both the

marine life and pollinator visitation phenomena. The approach of updating the

trawl length is shown to produce an unbiased estimator of the density of events

even though the sampling procedure is being updated on-line.

In more recent work, Thompson et. al. [99] extend their one-phase approach

to better deal with phenomena where the spatial component can be expressed as a

graph, the social graph when considering the spread of diseases. Weighted links in

the graph and information about neighbors are used overcome minimal evidence

that would otherwise limit sampling of particular nodes. This work can be applied

to our application if we consider adjacent flowers in a region to represent a graph

whose edges are weight by the likelihood of a pollinator passing from one flower

to a given neighbor. However, after having analyzed the data, we found little

correlation between events on flowers, leading us to believe that the phenomena

occurring on each flower is independent. Still, in when this independence does

not exist, this graph-based approach has the potential to compensate for the

dependent effects.

4.7 Conclusion

Using imagers to increase the data collection coverage of novel events occurring

to regions of interest is clearly valuable to scientists. Using pollinator visitation

as the driving application, we have shown that the procedure we’ve developed can

successfully produce accurate density estimates for short, somewhat rare events.

We are able to leverage our previous work to detect events by actuating cameras to
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gather higher resolution, narrower field of view imagery of the individual regions

of interest. The key innovation of our procedure is the novel use of adaptive

stratified sampling to we focus our limited resources on regions likely to be visited.

Finally, we show that by devoting more resources to the sampling effort, we can

decrease the error in our density estimate.

Having this tool at their disposal, biologists can devise more elaborate studies

than are currently possible due to the volume of data collection required.
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CHAPTER 5

Future Work

There are a variety of future directions for our work, the most important of which

are the distillation a reusable toolkit for each of the three template procedures,

and further deployments to collect more biologically relevant data and evaluate

the robustness of these approaches. There are also a set of algorithmic improve-

ments we have suggested that may be required for these future deployments.

As the software currently exists, it is not yet packaged for broad use. Though

all the procedures are automated and have reasonable computational properties,

they have minimal documentation, require system knowledge to debug failures,

required user workflow (e.g. labeling imagery or template extraction) is not

well described, and evaluation mechanisms are not centralized. To polish the

implementation, we plan to build a web interface for interacting with the software,

which would run locally on the user’s computer. It would walk the user through

labeling or inputting training data, showing both training and testing results in

graphical form using the same metrics we have previously used to evaluate these

procedures.

The long term impact of our work will be seen through its deployment in

future image-based sensing systems and its influence on the design of related

systems. The goal of these deployments is to collect biologically useful data that

will directly be used in a biological study. Example applications we describe

are carefully modeled after existing studies, but we plan to directly apply of
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our procedures to perform previously intractable biological studies. An initial

candidate for our continuous signal procedure is the inference of CO2 flux from

the years of imaging data collected by MossCam [36] at James Reserve. For

our discrete signal procedure, we plan to perform a pollinator studies to better

understand how optimal foraging theory [65] applies to bees.

Driven by the additional requirements of future deployments, we may need to

consider various algorithmic improvements to our template procedures, though

their high-level form will remain unchanged. When estimating continuous signals

we can improve our lighting model by jointly considering the possible illumina-

tions and relative spectral reflectance to limit our modeling effort to the possi-

ble visual appearances of the subject. For discrete signals, we can improve our

tracking approach to handle multiple targets. Additionally, we can improve the

training of our background model by iteratively training the model by removing

training frames contained in the final detection output (since they likely contain

the target), and continuing until the output converges. Further algorithmic im-

provements will no doubt present themselves as our work is extended into new

application domains.

A final extension to our work is the design of additional template procedures

for new types of biological signals. For these systems, the primary goal would

be to isolate changes the particular target of interest from changes to the local

environment; emulating our approach to extract color in the presence of changing

lighting or the region of interest in the presence of significant natural motion.

Through this isolation, new field robust template procedures can be constructed.
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CHAPTER 6

Conclusion

In this dissertation, we have discussed three template procedures that can be

used to build image-based sensor for continuous, discrete, and discrete spatio-

temporal biological phenomena. Each of these signals are extracted from natural

processes that evolve somewhat predictably over time, as opposed to the detec-

tion of discrete, rare, and novel events. Leveraging signal-specific mechanisms,

we isolate the changes in subject of interest from changes in the background envi-

ronment, making the procedures more resilient to changing field conditions. We

have shown how to effectively model the target signals using a combination of

training data from both the field and the laboratory. Finally, we have evaluated

our template procedures in the context of specific applications and argued for the

procedure’s generalizability due to their limited assumptions.

We consider the CO2 flux from a drought-tolerant moss Tortula princeps as

an application for predicting continuous signals. With little more than the color

of the subject available as input, the template procedure for continuous signals

relies heavily on color image features. Using color features directly is brittle due

to the effect of changing illumination. Thus, we have developed an approach

to predict and compensate for the natural changes in the incident illumination

present in the scene, producing stable image features that represent changes to

the moss alone. Through the combination of laboratory measurements of CO2

flux and field measurements of lighting, we have shown in simulation that our
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model can predict CO2 flux to 0.439ppm, which is within the 0.5ppm error bounds

acceptable to domain scientists.

Extracting frames from a video sequence that depict the presence of pollina-

tors on a flower was the application used to evaluate the template procedure for

discrete signals. Natural motion in the scene, typically caused by wind, causes

significant variation in the appearance of the background and the location of the

foreground (the flower and more importantly the pollinator). To discard much of

the confounding motion in the scene, we automatically extracted a region of in-

terest (ROI), the flower, from the scene. This approach has two beneficial effects:

First, the phenomena dictates that the natural motion of the target becomes

much slower and predictable when it approaches the ROI. Second, registering

the image in this way significantly simplifies further processing such as back-

ground modeling and target motion modeling. Using the procedure we describe,

we are able to achieve at worst 90% extraction precision and 80% extraction

recall, in many cases achiving perfect precision and recall.

Scaling the previously mentioned pollinator application to estimate the den-

sity of pollinator presence events over an entire field of flowers, rather than a

single flower, is an example of a discrete spatio-temporal signals. Video imagery

of the entire scene contains a mix of regions of interest (the flowers) and regions

that can be safely discarded (the surrounding leaves and ground). We automat-

ically identify the regions of interest and consider each an independent stratum

when applying an adaptive sampling procedure to preferentially sample regions

that are seeing more activity. Isolating the regions in this way allows us to both

reuse the discrete signal template procedure when considering a single stratum

and produce a model unbiased estimator of event density across all strata. This

approach yields a density estimate with approximately 10% error, which can be
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further reduced by using additional cameras.

In addition to the template procedures we have discussed, our primary contri-

bution is the consistent structure of these procedures that makes them robust to

field conditions: isolate the target signal from the naturally induced background

noise, be it lighting, motion, or other confounding effects. Then, directly model

the signal from relevant image features. We believe that this form is common to

all image-based sensor deployments and have discussed the applicability of this

approach to three specific types of biological signals.
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