Imagers as sensors: Correlating plant CO₂ uptake with digital visible-light imagery

Josh Hyman, Eric Graham Mark Hansen, Deborah Estrin Center for Embedded Networked Sensing University of California, Los Angeles

The problem

- Estimate CO₂ uptake of a drought tolerant moss
 - we measure moss because there is extensive biological knowledge to inform our model
- Build model from ground truth and images gathered under laboratory conditions

Such a model adds value to MossCam database which contains historical images of this plant in the field

 CO_2 uptake is the quantity of CO_2 (ppm/m²/sec) absorbed or released by a plant during photosynthesis

- Dense measurement of plant CO₂ uptake can be extrapolated to entire forests
- Understanding the CO₂ uptake of an entire forest can help model global CO₂ levels

Source: http://en.wikipedia.org/wiki/Carbon_cycle

Using applied vision

- Not general vision
 - ground truth not present in the images themselves
 - humans can't discern CO₂
 from images of plants
- Applied vision
 - use features similar to those used by general vision
 - features as input to a model which learn the underlying phenomena

Original Image

Extracted Color Histogram

Method for building sensing imagers

CENTER FOR EMBEDDED NETWORKED SENSING

20

150

8

20

Start with images taken of a biological event stored in a database

Compute domain relevant image feature set

Find the most correlated image features and generate a model from this set to predict the biological event

Experimental design CENTER FOR EMBEDDED NETWORKED SENSING

Procedure:

- 1. Water the moss
- 2. Cycle light on and off
- 3. Repeat until the moss is dormant

Gathered Data:

- 1. Ground truth: the difference between CO_2 in the intake versus the exhaust
- 2. Images of the moss plant which coincide with the CO₂ uptake measurements

- Controlled lighting
- Controlled moisture
- CO₂ measured using spectroscopy (measurement error: 0.1 ppm)

Characteristics of CO₂ uptake

- Drying cycle
 - water evaporates when warmed by light
 - redistributes water when dark
- Once completely dry, becomes dormant until it is watered
- CO₂ uptake dependant on moisture

 Domain knowledge suggests that color (specifically greenness) is a good predictor

CENTER FOR EMBEDDED NETWORKED SENSING

- Compute Euclidian distance between image's color histogram and a reference green histogram
- Plot shows the beginnings of a trend

Extracting image features

- Compute HSV (Hue, Saturation, Value) histogram
 - more stable than RGB
 - inexpensive to compute
- Compute a set of variable sized windows, grouping similar colors

- We consider building 2 different kinds of models based on the data collected in the lab
 - Classification based model
 - Regression based model
- The models are trained on features extracted from the images and are trying to estimate the coinciding CO₂ measurement

EXAMPLE 1 Building a model: Classifier

Build 6 binary classifiers

- Divide values into 6 equal-sized bands
- Train 6 SVM based classifiers using all generated features
- Why 6 classifiers?
 - More than 6 results in over-fitting
 - Less than 6 leads to insufficient accuracy

Building a model: Classifier

Classifying data

- A point P is in class K if the Kth binary classifier responds most strongly
- The point P is assigned the median value of class K
- Response is the distance to the hyper-surface separating class K from all other points

Index

Classifier	1	2	3	4	5	6
Response	-2.19	1.54	3.08	2.33	-1.37	-3.21

Results: Classifier

Reasons for high error

- too few classes to cover all drying states
- many classes had too little training data
- classes of fixed size, doesn't reflect reality

Not particularly meaningful to compare distance in different features spaces

Sensor measurement error	0.10 ppm	
Acceptable error	0.50 ppm	
Model's RMS error	0.74 ppm	

- Recursively choose a feature and corresponding threshold that increases purity
- At each leaf node, all remaining points assigned the average of the corresponding CO₂ uptake value
 - Effectively creates variable sized pseudo-bands based on similarity

CENTER FOR EMBEDDED NETWORKED SENSING

- Count (9) and width of "bands" chosen intelligently
 - More accurate prediction
 - Data adaptive rather than statically chosen
- Errors
 - Final state color similar to drying moss color, causing confusion
 - Unique or rarely seen values have larger error

Sensor measurement error	0.10 ppm	
Acceptable error	0.50 ppm	
Model's RMS error	0.49 ppm	

S Error Analysis CENTER FOR EMBEDDED NETWORKED SENSING

- The squared error is parabolic-shaped because one value is assigned to each "band"
- There is 1 parabolic error curve for each "band" in the model

Error Analysis

CENTER FOR EMBEDDED NETWORKED SENSING

- Likely locations of high error revealed by rudimentary greenness measure
- Many different CO₂ measurements for a greenness value makes prediction more difficult

Biological reason:

- Same approximate color for different stages of drying
- Moss drying stage dictates CO₂ uptake

- Feature computation
 - time and space linear in the number of pixels
 - constant factor improvement by down-sampling HSV histogram

- SVM model application
 - requires complex model application

$$\max \sum_{i=1}^{n} \alpha_i - \sum_{i,j} \alpha_i \alpha_j c_i c_j \mathbf{x}_i^T \mathbf{x}_j \text{ subject to } \alpha_i \ge 0,$$

- significant storage required for a large set of support vectors used in the model
- Regression tree model application
 - requires only numerical comparison
 - minimal storage needed to store tree structure

CENS Model comparison CENTER FOR EMBEDDED NETWORKED SENSING

	Classification Model	Regression Model	
Feature Computation Complexity	Low	Low	
Storage Requirements	High	Low	
Application Complexity	Medium	Low	
Testing RMS Error	0.74 ppm	0.49 ppm	

Overall, the regression model performed better than the classification model with respect to many different axes of comparision

Uses in-situ imagers

- rapid deployment
- more dense image coverage (sub-pixel resolution in comparison)
- can faster react to environmental changes
- Complementary measurement
 - an in-situ imaging sensor deployment can be triggered by events captured by remote sensing
- Minimal post-processing
- Models simple enough to be applied on sensors themselves eventually

Source: http://www.geo.mtu.edu/

- Push computation onto sensor nodes
 - perform model application on sensor nodes
 - turn imagers into first class sensors capable of producing biological measurements directly
- Extend to field imagery
 - changing lighting (eg. clouds) effects color
 - must compensate for variable white balance
- Use external sensors to inform model
 - temporal nature of drying could be used if rain events can be detected
 - PAR (light) sensor can help fix white balance

Questions?